Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brif2 Structured version   Visualization version   GIF version

Theorem brif2 42217
Description: Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024.)
Assertion
Ref Expression
brif2 (𝐶𝑅if(𝜑, 𝐴, 𝐵) ↔ if-(𝜑, 𝐶𝑅𝐴, 𝐶𝑅𝐵))

Proof of Theorem brif2
StepHypRef Expression
1 iftrue 4554 . . 3 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
21breq2d 5178 . 2 (𝜑 → (𝐶𝑅if(𝜑, 𝐴, 𝐵) ↔ 𝐶𝑅𝐴))
3 iffalse 4557 . . 3 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
43breq2d 5178 . 2 𝜑 → (𝐶𝑅if(𝜑, 𝐴, 𝐵) ↔ 𝐶𝑅𝐵))
52, 4casesifp 1078 1 (𝐶𝑅if(𝜑, 𝐴, 𝐵) ↔ if-(𝜑, 𝐶𝑅𝐴, 𝐶𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  if-wif 1063  ifcif 4548   class class class wbr 5166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167
This theorem is referenced by:  prjspner01  42580
  Copyright terms: Public domain W3C validator