Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brif2 Structured version   Visualization version   GIF version

Theorem brif2 42241
Description: Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024.)
Assertion
Ref Expression
brif2 (𝐶𝑅if(𝜑, 𝐴, 𝐵) ↔ if-(𝜑, 𝐶𝑅𝐴, 𝐶𝑅𝐵))

Proof of Theorem brif2
StepHypRef Expression
1 iftrue 4536 . . 3 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
21breq2d 5159 . 2 (𝜑 → (𝐶𝑅if(𝜑, 𝐴, 𝐵) ↔ 𝐶𝑅𝐴))
3 iffalse 4539 . . 3 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
43breq2d 5159 . 2 𝜑 → (𝐶𝑅if(𝜑, 𝐴, 𝐵) ↔ 𝐶𝑅𝐵))
52, 4casesifp 1077 1 (𝐶𝑅if(𝜑, 𝐴, 𝐵) ↔ if-(𝜑, 𝐶𝑅𝐴, 𝐶𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  if-wif 1062  ifcif 4530   class class class wbr 5147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5148
This theorem is referenced by:  prjspner01  42611
  Copyright terms: Public domain W3C validator