Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brif2 Structured version   Visualization version   GIF version

Theorem brif2 40199
Description: Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024.)
Assertion
Ref Expression
brif2 (𝐶𝑅if(𝜑, 𝐴, 𝐵) ↔ if-(𝜑, 𝐶𝑅𝐴, 𝐶𝑅𝐵))

Proof of Theorem brif2
StepHypRef Expression
1 iftrue 4465 . . 3 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
21breq2d 5086 . 2 (𝜑 → (𝐶𝑅if(𝜑, 𝐴, 𝐵) ↔ 𝐶𝑅𝐴))
3 iffalse 4468 . . 3 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
43breq2d 5086 . 2 𝜑 → (𝐶𝑅if(𝜑, 𝐴, 𝐵) ↔ 𝐶𝑅𝐵))
52, 4casesifp 1076 1 (𝐶𝑅if(𝜑, 𝐴, 𝐵) ↔ if-(𝜑, 𝐶𝑅𝐴, 𝐶𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  if-wif 1060  ifcif 4459   class class class wbr 5074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075
This theorem is referenced by:  prjspner01  40462
  Copyright terms: Public domain W3C validator