| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brif2 | Structured version Visualization version GIF version | ||
| Description: Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024.) |
| Ref | Expression |
|---|---|
| brif2 | ⊢ (𝐶𝑅if(𝜑, 𝐴, 𝐵) ↔ if-(𝜑, 𝐶𝑅𝐴, 𝐶𝑅𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4506 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 2 | 1 | breq2d 5131 | . 2 ⊢ (𝜑 → (𝐶𝑅if(𝜑, 𝐴, 𝐵) ↔ 𝐶𝑅𝐴)) |
| 3 | iffalse 4509 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 4 | 3 | breq2d 5131 | . 2 ⊢ (¬ 𝜑 → (𝐶𝑅if(𝜑, 𝐴, 𝐵) ↔ 𝐶𝑅𝐵)) |
| 5 | 2, 4 | casesifp 1077 | 1 ⊢ (𝐶𝑅if(𝜑, 𝐴, 𝐵) ↔ if-(𝜑, 𝐶𝑅𝐴, 𝐶𝑅𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 if-wif 1062 ifcif 4500 class class class wbr 5119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 |
| This theorem is referenced by: prjspner01 42595 |
| Copyright terms: Public domain | W3C validator |