Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brif12 Structured version   Visualization version   GIF version

Theorem brif12 39947
Description: Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024.)
Assertion
Ref Expression
brif12 (if(𝜑, 𝐴, 𝐵)𝑅if(𝜑, 𝐶, 𝐷) ↔ if-(𝜑, 𝐴𝑅𝐶, 𝐵𝑅𝐷))

Proof of Theorem brif12
StepHypRef Expression
1 iftrue 4460 . . 3 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
2 iftrue 4460 . . 3 (𝜑 → if(𝜑, 𝐶, 𝐷) = 𝐶)
31, 2breq12d 5081 . 2 (𝜑 → (if(𝜑, 𝐴, 𝐵)𝑅if(𝜑, 𝐶, 𝐷) ↔ 𝐴𝑅𝐶))
4 iffalse 4463 . . 3 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
5 iffalse 4463 . . 3 𝜑 → if(𝜑, 𝐶, 𝐷) = 𝐷)
64, 5breq12d 5081 . 2 𝜑 → (if(𝜑, 𝐴, 𝐵)𝑅if(𝜑, 𝐶, 𝐷) ↔ 𝐵𝑅𝐷))
73, 6casesifp 1079 1 (if(𝜑, 𝐴, 𝐵)𝑅if(𝜑, 𝐶, 𝐷) ↔ if-(𝜑, 𝐴𝑅𝐶, 𝐵𝑅𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  if-wif 1063  ifcif 4454   class class class wbr 5068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-ext 2709
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-ifp 1064  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2072  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3071  df-v 3423  df-dif 3884  df-un 3886  df-nul 4253  df-if 4455  df-sn 4557  df-pr 4559  df-op 4563  df-br 5069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator