|   | Mathbox for Steven Nguyen | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brif12 | Structured version Visualization version GIF version | ||
| Description: Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024.) | 
| Ref | Expression | 
|---|---|
| brif12 | ⊢ (if(𝜑, 𝐴, 𝐵)𝑅if(𝜑, 𝐶, 𝐷) ↔ if-(𝜑, 𝐴𝑅𝐶, 𝐵𝑅𝐷)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iftrue 4531 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 2 | iftrue 4531 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐶, 𝐷) = 𝐶) | |
| 3 | 1, 2 | breq12d 5156 | . 2 ⊢ (𝜑 → (if(𝜑, 𝐴, 𝐵)𝑅if(𝜑, 𝐶, 𝐷) ↔ 𝐴𝑅𝐶)) | 
| 4 | iffalse 4534 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 5 | iffalse 4534 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐶, 𝐷) = 𝐷) | |
| 6 | 4, 5 | breq12d 5156 | . 2 ⊢ (¬ 𝜑 → (if(𝜑, 𝐴, 𝐵)𝑅if(𝜑, 𝐶, 𝐷) ↔ 𝐵𝑅𝐷)) | 
| 7 | 3, 6 | casesifp 1078 | 1 ⊢ (if(𝜑, 𝐴, 𝐵)𝑅if(𝜑, 𝐶, 𝐷) ↔ if-(𝜑, 𝐴𝑅𝐶, 𝐵𝑅𝐷)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 if-wif 1063 ifcif 4525 class class class wbr 5143 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |