Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brif12 Structured version   Visualization version   GIF version

Theorem brif12 42276
Description: Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024.)
Assertion
Ref Expression
brif12 (if(𝜑, 𝐴, 𝐵)𝑅if(𝜑, 𝐶, 𝐷) ↔ if-(𝜑, 𝐴𝑅𝐶, 𝐵𝑅𝐷))

Proof of Theorem brif12
StepHypRef Expression
1 iftrue 4506 . . 3 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
2 iftrue 4506 . . 3 (𝜑 → if(𝜑, 𝐶, 𝐷) = 𝐶)
31, 2breq12d 5132 . 2 (𝜑 → (if(𝜑, 𝐴, 𝐵)𝑅if(𝜑, 𝐶, 𝐷) ↔ 𝐴𝑅𝐶))
4 iffalse 4509 . . 3 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
5 iffalse 4509 . . 3 𝜑 → if(𝜑, 𝐶, 𝐷) = 𝐷)
64, 5breq12d 5132 . 2 𝜑 → (if(𝜑, 𝐴, 𝐵)𝑅if(𝜑, 𝐶, 𝐷) ↔ 𝐵𝑅𝐷))
73, 6casesifp 1077 1 (if(𝜑, 𝐴, 𝐵)𝑅if(𝜑, 𝐶, 𝐷) ↔ if-(𝜑, 𝐴𝑅𝐶, 𝐵𝑅𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  if-wif 1062  ifcif 4500   class class class wbr 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator