Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brif12 | Structured version Visualization version GIF version |
Description: Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024.) |
Ref | Expression |
---|---|
brif12 | ⊢ (if(𝜑, 𝐴, 𝐵)𝑅if(𝜑, 𝐶, 𝐷) ↔ if-(𝜑, 𝐴𝑅𝐶, 𝐵𝑅𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4460 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
2 | iftrue 4460 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐶, 𝐷) = 𝐶) | |
3 | 1, 2 | breq12d 5081 | . 2 ⊢ (𝜑 → (if(𝜑, 𝐴, 𝐵)𝑅if(𝜑, 𝐶, 𝐷) ↔ 𝐴𝑅𝐶)) |
4 | iffalse 4463 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
5 | iffalse 4463 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐶, 𝐷) = 𝐷) | |
6 | 4, 5 | breq12d 5081 | . 2 ⊢ (¬ 𝜑 → (if(𝜑, 𝐴, 𝐵)𝑅if(𝜑, 𝐶, 𝐷) ↔ 𝐵𝑅𝐷)) |
7 | 3, 6 | casesifp 1079 | 1 ⊢ (if(𝜑, 𝐴, 𝐵)𝑅if(𝜑, 𝐶, 𝐷) ↔ if-(𝜑, 𝐴𝑅𝐶, 𝐵𝑅𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 if-wif 1063 ifcif 4454 class class class wbr 5068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-ext 2709 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-ifp 1064 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2072 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3071 df-v 3423 df-dif 3884 df-un 3886 df-nul 4253 df-if 4455 df-sn 4557 df-pr 4559 df-op 4563 df-br 5069 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |