![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brif12 | Structured version Visualization version GIF version |
Description: Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024.) |
Ref | Expression |
---|---|
brif12 | ⊢ (if(𝜑, 𝐴, 𝐵)𝑅if(𝜑, 𝐶, 𝐷) ↔ if-(𝜑, 𝐴𝑅𝐶, 𝐵𝑅𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4554 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
2 | iftrue 4554 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐶, 𝐷) = 𝐶) | |
3 | 1, 2 | breq12d 5179 | . 2 ⊢ (𝜑 → (if(𝜑, 𝐴, 𝐵)𝑅if(𝜑, 𝐶, 𝐷) ↔ 𝐴𝑅𝐶)) |
4 | iffalse 4557 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
5 | iffalse 4557 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐶, 𝐷) = 𝐷) | |
6 | 4, 5 | breq12d 5179 | . 2 ⊢ (¬ 𝜑 → (if(𝜑, 𝐴, 𝐵)𝑅if(𝜑, 𝐶, 𝐷) ↔ 𝐵𝑅𝐷)) |
7 | 3, 6 | casesifp 1078 | 1 ⊢ (if(𝜑, 𝐴, 𝐵)𝑅if(𝜑, 𝐶, 𝐷) ↔ if-(𝜑, 𝐴𝑅𝐶, 𝐵𝑅𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 if-wif 1063 ifcif 4548 class class class wbr 5166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ifp 1064 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |