![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvixpdavw | Structured version Visualization version GIF version |
Description: Change bound variable in an indexed Cartesian product. Deduction form. (Contributed by GG, 14-Aug-2025.) |
Ref | Expression |
---|---|
cbvixpdavw.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvixpdavw | ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w 2827 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
2 | 1 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
3 | 2 | cbvabdavw 36214 | . . . . 5 ⊢ (𝜑 → {𝑥 ∣ 𝑥 ∈ 𝐴} = {𝑦 ∣ 𝑦 ∈ 𝐴}) |
4 | 3 | fneq2d 6668 | . . . 4 ⊢ (𝜑 → (𝑡 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ↔ 𝑡 Fn {𝑦 ∣ 𝑦 ∈ 𝐴})) |
5 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦) | |
6 | 5 | fveq2d 6919 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝑡‘𝑥) = (𝑡‘𝑦)) |
7 | cbvixpdavw.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐵 = 𝐶) | |
8 | 6, 7 | eleq12d 2838 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → ((𝑡‘𝑥) ∈ 𝐵 ↔ (𝑡‘𝑦) ∈ 𝐶)) |
9 | 8 | cbvraldva 3245 | . . . 4 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝑡‘𝑥) ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐴 (𝑡‘𝑦) ∈ 𝐶)) |
10 | 4, 9 | anbi12d 631 | . . 3 ⊢ (𝜑 → ((𝑡 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑡‘𝑥) ∈ 𝐵) ↔ (𝑡 Fn {𝑦 ∣ 𝑦 ∈ 𝐴} ∧ ∀𝑦 ∈ 𝐴 (𝑡‘𝑦) ∈ 𝐶))) |
11 | 10 | abbidv 2811 | . 2 ⊢ (𝜑 → {𝑡 ∣ (𝑡 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑡‘𝑥) ∈ 𝐵)} = {𝑡 ∣ (𝑡 Fn {𝑦 ∣ 𝑦 ∈ 𝐴} ∧ ∀𝑦 ∈ 𝐴 (𝑡‘𝑦) ∈ 𝐶)}) |
12 | df-ixp 8950 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑡 ∣ (𝑡 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑡‘𝑥) ∈ 𝐵)} | |
13 | df-ixp 8950 | . 2 ⊢ X𝑦 ∈ 𝐴 𝐶 = {𝑡 ∣ (𝑡 Fn {𝑦 ∣ 𝑦 ∈ 𝐴} ∧ ∀𝑦 ∈ 𝐴 (𝑡‘𝑦) ∈ 𝐶)} | |
14 | 11, 12, 13 | 3eqtr4g 2805 | 1 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 Fn wfn 6563 ‘cfv 6568 Xcixp 8949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6520 df-fn 6571 df-fv 6576 df-ixp 8950 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |