Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvixpdavw2 Structured version   Visualization version   GIF version

Theorem cbvixpdavw2 36328
Description: Change bound variable and domain in an indexed Cartesian product. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypotheses
Ref Expression
cbvixpdavw2.1 ((𝜑𝑥 = 𝑦) → 𝐶 = 𝐷)
cbvixpdavw2.2 ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐵)
Assertion
Ref Expression
cbvixpdavw2 (𝜑X𝑥𝐴 𝐶 = X𝑦𝐵 𝐷)
Distinct variable groups:   𝜑,𝑥,𝑦   𝑦,𝐴   𝑥,𝐵   𝑦,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem cbvixpdavw2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝜑𝑥 = 𝑦) → 𝑥 = 𝑦)
2 cbvixpdavw2.2 . . . . . . 7 ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐵)
31, 2eleq12d 2825 . . . . . 6 ((𝜑𝑥 = 𝑦) → (𝑥𝐴𝑦𝐵))
43cbvabdavw 36290 . . . . 5 (𝜑 → {𝑥𝑥𝐴} = {𝑦𝑦𝐵})
54fneq2d 6570 . . . 4 (𝜑 → (𝑡 Fn {𝑥𝑥𝐴} ↔ 𝑡 Fn {𝑦𝑦𝐵}))
6 fveq2 6817 . . . . . . 7 (𝑥 = 𝑦 → (𝑡𝑥) = (𝑡𝑦))
76adantl 481 . . . . . 6 ((𝜑𝑥 = 𝑦) → (𝑡𝑥) = (𝑡𝑦))
8 cbvixpdavw2.1 . . . . . 6 ((𝜑𝑥 = 𝑦) → 𝐶 = 𝐷)
97, 8eleq12d 2825 . . . . 5 ((𝜑𝑥 = 𝑦) → ((𝑡𝑥) ∈ 𝐶 ↔ (𝑡𝑦) ∈ 𝐷))
109, 2cbvraldva2 3314 . . . 4 (𝜑 → (∀𝑥𝐴 (𝑡𝑥) ∈ 𝐶 ↔ ∀𝑦𝐵 (𝑡𝑦) ∈ 𝐷))
115, 10anbi12d 632 . . 3 (𝜑 → ((𝑡 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑡𝑥) ∈ 𝐶) ↔ (𝑡 Fn {𝑦𝑦𝐵} ∧ ∀𝑦𝐵 (𝑡𝑦) ∈ 𝐷)))
1211abbidv 2797 . 2 (𝜑 → {𝑡 ∣ (𝑡 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑡𝑥) ∈ 𝐶)} = {𝑡 ∣ (𝑡 Fn {𝑦𝑦𝐵} ∧ ∀𝑦𝐵 (𝑡𝑦) ∈ 𝐷)})
13 df-ixp 8817 . 2 X𝑥𝐴 𝐶 = {𝑡 ∣ (𝑡 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑡𝑥) ∈ 𝐶)}
14 df-ixp 8817 . 2 X𝑦𝐵 𝐷 = {𝑡 ∣ (𝑡 Fn {𝑦𝑦𝐵} ∧ ∀𝑦𝐵 (𝑡𝑦) ∈ 𝐷)}
1512, 13, 143eqtr4g 2791 1 (𝜑X𝑥𝐴 𝐶 = X𝑦𝐵 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  wral 3047   Fn wfn 6471  cfv 6476  Xcixp 8816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-iota 6432  df-fn 6479  df-fv 6484  df-ixp 8817
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator