| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvex | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2377. Check out cbvexvw 2036, cbvexv1 2344 for weaker versions requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cbval.1 | ⊢ Ⅎ𝑦𝜑 |
| cbval.2 | ⊢ Ⅎ𝑥𝜓 |
| cbval.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvex | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbval.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | nfn 1857 | . . . 4 ⊢ Ⅎ𝑦 ¬ 𝜑 |
| 3 | cbval.2 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | nfn 1857 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜓 |
| 5 | cbval.3 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 5 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 7 | 2, 4, 6 | cbval 2403 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓) |
| 8 | alnex 1781 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 9 | alnex 1781 | . . 3 ⊢ (∀𝑦 ¬ 𝜓 ↔ ¬ ∃𝑦𝜓) | |
| 10 | 7, 8, 9 | 3bitr3i 301 | . 2 ⊢ (¬ ∃𝑥𝜑 ↔ ¬ ∃𝑦𝜓) |
| 11 | 10 | con4bii 321 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-11 2157 ax-12 2177 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: cbvexv 2406 sb8e 2523 cbveuALT 2608 |
| Copyright terms: Public domain | W3C validator |