Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvsumdavw2 Structured version   Visualization version   GIF version

Theorem cbvsumdavw2 36253
Description: Change bound variable and the set of integers in a sum. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypotheses
Ref Expression
cbvsumdavw2.1 (𝜑𝐴 = 𝐵)
cbvsumdavw2.2 ((𝜑𝑗 = 𝑘) → 𝐶 = 𝐷)
Assertion
Ref Expression
cbvsumdavw2 (𝜑 → Σ𝑗𝐴 𝐶 = Σ𝑘𝐵 𝐷)
Distinct variable groups:   𝜑,𝑗,𝑘   𝐶,𝑘   𝐷,𝑗
Allowed substitution hints:   𝐴(𝑗,𝑘)   𝐵(𝑗,𝑘)   𝐶(𝑗)   𝐷(𝑘)

Proof of Theorem cbvsumdavw2
Dummy variables 𝑥 𝑚 𝑛 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cbvsumdavw2.1 . . . . . . 7 (𝜑𝐴 = 𝐵)
21sseq1d 4040 . . . . . 6 (𝜑 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐵 ⊆ (ℤ𝑚)))
31eleq2d 2830 . . . . . . . . . 10 (𝜑 → (𝑛𝐴𝑛𝐵))
4 cbvsumdavw2.2 . . . . . . . . . . 11 ((𝜑𝑗 = 𝑘) → 𝐶 = 𝐷)
54cbvcsbdavw 36217 . . . . . . . . . 10 (𝜑𝑛 / 𝑗𝐶 = 𝑛 / 𝑘𝐷)
63, 5ifbieq1d 4572 . . . . . . . . 9 (𝜑 → if(𝑛𝐴, 𝑛 / 𝑗𝐶, 0) = if(𝑛𝐵, 𝑛 / 𝑘𝐷, 0))
76mpteq2dv 5268 . . . . . . . 8 (𝜑 → (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐶, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐷, 0)))
87seqeq3d 14054 . . . . . . 7 (𝜑 → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐶, 0))) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐷, 0))))
98breq1d 5176 . . . . . 6 (𝜑 → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐶, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐷, 0))) ⇝ 𝑥))
102, 9anbi12d 631 . . . . 5 (𝜑 → ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐶, 0))) ⇝ 𝑥) ↔ (𝐵 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐷, 0))) ⇝ 𝑥)))
1110rexbidv 3185 . . . 4 (𝜑 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐶, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐷, 0))) ⇝ 𝑥)))
121f1oeq3d 6854 . . . . . . 7 (𝜑 → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑚)–1-1-onto𝐵))
134cbvcsbdavw 36217 . . . . . . . . . . 11 (𝜑(𝑓𝑛) / 𝑗𝐶 = (𝑓𝑛) / 𝑘𝐷)
1413mpteq2dv 5268 . . . . . . . . . 10 (𝜑 → (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶) = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))
1514seqeq3d 14054 . . . . . . . . 9 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶)) = seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷)))
1615fveq1d 6917 . . . . . . . 8 (𝜑 → (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚))
1716eqeq2d 2751 . . . . . . 7 (𝜑 → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚) ↔ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚)))
1812, 17anbi12d 631 . . . . . 6 (𝜑 → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚))))
1918exbidv 1920 . . . . 5 (𝜑 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚))))
2019rexbidv 3185 . . . 4 (𝜑 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚))))
2111, 20orbi12d 917 . . 3 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐷, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚)))))
2221iotabidv 6552 . 2 (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐷, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚)))))
23 df-sum 15729 . 2 Σ𝑗𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚))))
24 df-sum 15729 . 2 Σ𝑘𝐵 𝐷 = (℩𝑥(∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐷, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚))))
2522, 23, 243eqtr4g 2805 1 (𝜑 → Σ𝑗𝐴 𝐶 = Σ𝑘𝐵 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wex 1777  wcel 2108  wrex 3076  csb 3921  wss 3976  ifcif 4548   class class class wbr 5166  cmpt 5249  cio 6518  1-1-ontowf1o 6567  cfv 6568  (class class class)co 7443  0cc0 11178  1c1 11179   + caddc 11181  cn 12287  cz 12633  cuz 12897  ...cfz 13561  seqcseq 14046  cli 15524  Σcsu 15728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-xp 5701  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-pred 6327  df-iota 6520  df-f 6572  df-f1 6573  df-fo 6574  df-f1o 6575  df-fv 6576  df-ov 7446  df-oprab 7447  df-mpo 7448  df-frecs 8316  df-wrecs 8347  df-recs 8421  df-rdg 8460  df-seq 14047  df-sum 15729
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator