| Step | Hyp | Ref
| Expression |
| 1 | | cbvsumdavw2.1 |
. . . . . . 7
⊢ (𝜑 → 𝐴 = 𝐵) |
| 2 | 1 | sseq1d 3988 |
. . . . . 6
⊢ (𝜑 → (𝐴 ⊆ (ℤ≥‘𝑚) ↔ 𝐵 ⊆ (ℤ≥‘𝑚))) |
| 3 | 1 | eleq2d 2819 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑛 ∈ 𝐴 ↔ 𝑛 ∈ 𝐵)) |
| 4 | | cbvsumdavw2.2 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 = 𝑘) → 𝐶 = 𝐷) |
| 5 | 4 | cbvcsbdavw 36198 |
. . . . . . . . . 10
⊢ (𝜑 → ⦋𝑛 / 𝑗⦌𝐶 = ⦋𝑛 / 𝑘⦌𝐷) |
| 6 | 3, 5 | ifbieq1d 4523 |
. . . . . . . . 9
⊢ (𝜑 → if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑗⦌𝐶, 0) = if(𝑛 ∈ 𝐵, ⦋𝑛 / 𝑘⦌𝐷, 0)) |
| 7 | 6 | mpteq2dv 5212 |
. . . . . . . 8
⊢ (𝜑 → (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑗⦌𝐶, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐵, ⦋𝑛 / 𝑘⦌𝐷, 0))) |
| 8 | 7 | seqeq3d 14016 |
. . . . . . 7
⊢ (𝜑 → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑗⦌𝐶, 0))) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐵, ⦋𝑛 / 𝑘⦌𝐷, 0)))) |
| 9 | 8 | breq1d 5126 |
. . . . . 6
⊢ (𝜑 → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑗⦌𝐶, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐵, ⦋𝑛 / 𝑘⦌𝐷, 0))) ⇝ 𝑥)) |
| 10 | 2, 9 | anbi12d 632 |
. . . . 5
⊢ (𝜑 → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑗⦌𝐶, 0))) ⇝ 𝑥) ↔ (𝐵 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐵, ⦋𝑛 / 𝑘⦌𝐷, 0))) ⇝ 𝑥))) |
| 11 | 10 | rexbidv 3162 |
. . . 4
⊢ (𝜑 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑗⦌𝐶, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐵, ⦋𝑛 / 𝑘⦌𝐷, 0))) ⇝ 𝑥))) |
| 12 | 1 | f1oeq3d 6811 |
. . . . . . 7
⊢ (𝜑 → (𝑓:(1...𝑚)–1-1-onto→𝐴 ↔ 𝑓:(1...𝑚)–1-1-onto→𝐵)) |
| 13 | 4 | cbvcsbdavw 36198 |
. . . . . . . . . . 11
⊢ (𝜑 → ⦋(𝑓‘𝑛) / 𝑗⦌𝐶 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐷) |
| 14 | 13 | mpteq2dv 5212 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐶) = (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷)) |
| 15 | 14 | seqeq3d 14016 |
. . . . . . . . 9
⊢ (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑗⦌𝐶)) = seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷))) |
| 16 | 15 | fveq1d 6874 |
. . . . . . . 8
⊢ (𝜑 → (seq1( + , (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑗⦌𝐶))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷))‘𝑚)) |
| 17 | 16 | eqeq2d 2745 |
. . . . . . 7
⊢ (𝜑 → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐶))‘𝑚) ↔ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷))‘𝑚))) |
| 18 | 12, 17 | anbi12d 632 |
. . . . . 6
⊢ (𝜑 → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐶))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐵 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷))‘𝑚)))) |
| 19 | 18 | exbidv 1920 |
. . . . 5
⊢ (𝜑 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐶))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐵 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷))‘𝑚)))) |
| 20 | 19 | rexbidv 3162 |
. . . 4
⊢ (𝜑 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐶))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐵 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷))‘𝑚)))) |
| 21 | 11, 20 | orbi12d 918 |
. . 3
⊢ (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑗⦌𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐶))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐵, ⦋𝑛 / 𝑘⦌𝐷, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐵 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷))‘𝑚))))) |
| 22 | 21 | iotabidv 6511 |
. 2
⊢ (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑗⦌𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐶))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐵, ⦋𝑛 / 𝑘⦌𝐷, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐵 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷))‘𝑚))))) |
| 23 | | df-sum 15690 |
. 2
⊢
Σ𝑗 ∈
𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑗⦌𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐶))‘𝑚)))) |
| 24 | | df-sum 15690 |
. 2
⊢
Σ𝑘 ∈
𝐵 𝐷 = (℩𝑥(∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐵, ⦋𝑛 / 𝑘⦌𝐷, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐵 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷))‘𝑚)))) |
| 25 | 22, 23, 24 | 3eqtr4g 2794 |
1
⊢ (𝜑 → Σ𝑗 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐷) |