Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvproddavw Structured version   Visualization version   GIF version

Theorem cbvproddavw 36238
Description: Change bound variable in a product. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypothesis
Ref Expression
cbvproddavw.1 ((𝜑𝑗 = 𝑘) → 𝐵 = 𝐶)
Assertion
Ref Expression
cbvproddavw (𝜑 → ∏𝑗𝐴 𝐵 = ∏𝑘𝐴 𝐶)
Distinct variable groups:   𝜑,𝑗,𝑘   𝐴,𝑗,𝑘   𝐵,𝑘   𝐶,𝑗
Allowed substitution hints:   𝐵(𝑗)   𝐶(𝑘)

Proof of Theorem cbvproddavw
Dummy variables 𝑥 𝑦 𝑚 𝑛 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2827 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
21adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑗 = 𝑘) → (𝑗𝐴𝑘𝐴))
3 cbvproddavw.1 . . . . . . . . . . . . 13 ((𝜑𝑗 = 𝑘) → 𝐵 = 𝐶)
42, 3ifbieq1d 4572 . . . . . . . . . . . 12 ((𝜑𝑗 = 𝑘) → if(𝑗𝐴, 𝐵, 1) = if(𝑘𝐴, 𝐶, 1))
54cbvmptdavw 36225 . . . . . . . . . . 11 (𝜑 → (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1)))
65seqeq3d 14054 . . . . . . . . . 10 (𝜑 → seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))))
76breq1d 5176 . . . . . . . . 9 (𝜑 → (seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑦 ↔ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦))
87anbi2d 629 . . . . . . . 8 (𝜑 → ((𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦)))
98exbidv 1920 . . . . . . 7 (𝜑 → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦)))
109rexbidv 3185 . . . . . 6 (𝜑 → (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦)))
115seqeq3d 14054 . . . . . . 7 (𝜑 → seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) = seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))))
1211breq1d 5176 . . . . . 6 (𝜑 → (seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥))
1310, 123anbi23d 1439 . . . . 5 (𝜑 → ((𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥)))
1413rexbidv 3185 . . . 4 (𝜑 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥)))
153cbvcsbdavw 36217 . . . . . . . . . . 11 (𝜑(𝑓𝑛) / 𝑗𝐵 = (𝑓𝑛) / 𝑘𝐶)
1615mpteq2dv 5268 . . . . . . . . . 10 (𝜑 → (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵) = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))
1716seqeq3d 14054 . . . . . . . . 9 (𝜑 → seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵)) = seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶)))
1817fveq1d 6917 . . . . . . . 8 (𝜑 → (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))
1918eqeq2d 2751 . . . . . . 7 (𝜑 → (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚) ↔ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))
2019anbi2d 629 . . . . . 6 (𝜑 → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
2120exbidv 1920 . . . . 5 (𝜑 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
2221rexbidv 3185 . . . 4 (𝜑 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
2314, 22orbi12d 917 . . 3 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))))
2423iotabidv 6552 . 2 (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))))
25 df-prod 15946 . 2 𝑗𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚))))
26 df-prod 15946 . 2 𝑘𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
2724, 25, 263eqtr4g 2805 1 (𝜑 → ∏𝑗𝐴 𝐵 = ∏𝑘𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  wrex 3076  csb 3921  wss 3976  ifcif 4548   class class class wbr 5166  cmpt 5249  cio 6518  1-1-ontowf1o 6567  cfv 6568  (class class class)co 7443  0cc0 11178  1c1 11179   · cmul 11183  cn 12287  cz 12633  cuz 12897  ...cfz 13561  seqcseq 14046  cli 15524  cprod 15945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-xp 5701  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-pred 6327  df-iota 6520  df-fv 6576  df-ov 7446  df-oprab 7447  df-mpo 7448  df-frecs 8316  df-wrecs 8347  df-recs 8421  df-rdg 8460  df-seq 14047  df-prod 15946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator