Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvproddavw2 Structured version   Visualization version   GIF version

Theorem cbvproddavw2 36330
Description: Change bound variable and the set of integers in a product. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypotheses
Ref Expression
cbvproddavw2.1 (𝜑𝐴 = 𝐵)
cbvproddavw2.2 ((𝜑𝑗 = 𝑘) → 𝐶 = 𝐷)
Assertion
Ref Expression
cbvproddavw2 (𝜑 → ∏𝑗𝐴 𝐶 = ∏𝑘𝐵 𝐷)
Distinct variable groups:   𝜑,𝑗,𝑘   𝐴,𝑘   𝐵,𝑗   𝐶,𝑘   𝐷,𝑗
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)   𝐶(𝑗)   𝐷(𝑘)

Proof of Theorem cbvproddavw2
Dummy variables 𝑥 𝑦 𝑚 𝑛 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cbvproddavw2.1 . . . . . . 7 (𝜑𝐴 = 𝐵)
21sseq1d 3961 . . . . . 6 (𝜑 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐵 ⊆ (ℤ𝑚)))
3 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑗 = 𝑘) → 𝑗 = 𝑘)
41adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 = 𝑘) → 𝐴 = 𝐵)
53, 4eleq12d 2825 . . . . . . . . . . . . 13 ((𝜑𝑗 = 𝑘) → (𝑗𝐴𝑘𝐵))
6 cbvproddavw2.2 . . . . . . . . . . . . 13 ((𝜑𝑗 = 𝑘) → 𝐶 = 𝐷)
75, 6ifbieq1d 4495 . . . . . . . . . . . 12 ((𝜑𝑗 = 𝑘) → if(𝑗𝐴, 𝐶, 1) = if(𝑘𝐵, 𝐷, 1))
87cbvmptdavw 36301 . . . . . . . . . . 11 (𝜑 → (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1)))
98seqeq3d 13911 . . . . . . . . . 10 (𝜑 → seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))))
109breq1d 5096 . . . . . . . . 9 (𝜑 → (seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑦 ↔ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑦))
1110anbi2d 630 . . . . . . . 8 (𝜑 → ((𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑦)))
1211exbidv 1922 . . . . . . 7 (𝜑 → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑦)))
1312rexbidv 3156 . . . . . 6 (𝜑 → (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑦) ↔ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑦)))
148seqeq3d 13911 . . . . . . 7 (𝜑 → seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) = seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))))
1514breq1d 5096 . . . . . 6 (𝜑 → (seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑥 ↔ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑥))
162, 13, 153anbi123d 1438 . . . . 5 (𝜑 → ((𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑥) ↔ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑥)))
1716rexbidv 3156 . . . 4 (𝜑 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑥)))
181f1oeq3d 6755 . . . . . . 7 (𝜑 → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑚)–1-1-onto𝐵))
196cbvcsbdavw 36293 . . . . . . . . . . 11 (𝜑(𝑓𝑛) / 𝑗𝐶 = (𝑓𝑛) / 𝑘𝐷)
2019mpteq2dv 5180 . . . . . . . . . 10 (𝜑 → (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶) = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))
2120seqeq3d 13911 . . . . . . . . 9 (𝜑 → seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶)) = seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷)))
2221fveq1d 6819 . . . . . . . 8 (𝜑 → (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚))
2322eqeq2d 2742 . . . . . . 7 (𝜑 → (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚) ↔ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚)))
2418, 23anbi12d 632 . . . . . 6 (𝜑 → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚))))
2524exbidv 1922 . . . . 5 (𝜑 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚))))
2625rexbidv 3156 . . . 4 (𝜑 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚))))
2717, 26orbi12d 918 . . 3 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚)))))
2827iotabidv 6460 . 2 (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚)))))
29 df-prod 15806 . 2 𝑗𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚))))
30 df-prod 15806 . 2 𝑘𝐵 𝐷 = (℩𝑥(∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚))))
3128, 29, 303eqtr4g 2791 1 (𝜑 → ∏𝑗𝐴 𝐶 = ∏𝑘𝐵 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wrex 3056  csb 3845  wss 3897  ifcif 4470   class class class wbr 5086  cmpt 5167  cio 6430  1-1-ontowf1o 6475  cfv 6476  (class class class)co 7341  0cc0 11001  1c1 11002   · cmul 11006  cn 12120  cz 12463  cuz 12727  ...cfz 13402  seqcseq 13903  cli 15386  cprod 15805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-xp 5617  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-iota 6432  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-seq 13904  df-prod 15806
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator