Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvproddavw2 Structured version   Visualization version   GIF version

Theorem cbvproddavw2 36257
Description: Change bound variable and the set of integers in a product. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypotheses
Ref Expression
cbvproddavw2.1 (𝜑𝐴 = 𝐵)
cbvproddavw2.2 ((𝜑𝑗 = 𝑘) → 𝐶 = 𝐷)
Assertion
Ref Expression
cbvproddavw2 (𝜑 → ∏𝑗𝐴 𝐶 = ∏𝑘𝐵 𝐷)
Distinct variable groups:   𝜑,𝑗,𝑘   𝐴,𝑘   𝐵,𝑗   𝐶,𝑘   𝐷,𝑗
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)   𝐶(𝑗)   𝐷(𝑘)

Proof of Theorem cbvproddavw2
Dummy variables 𝑥 𝑦 𝑚 𝑛 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cbvproddavw2.1 . . . . . . 7 (𝜑𝐴 = 𝐵)
21sseq1d 3975 . . . . . 6 (𝜑 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐵 ⊆ (ℤ𝑚)))
3 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑗 = 𝑘) → 𝑗 = 𝑘)
41adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 = 𝑘) → 𝐴 = 𝐵)
53, 4eleq12d 2822 . . . . . . . . . . . . 13 ((𝜑𝑗 = 𝑘) → (𝑗𝐴𝑘𝐵))
6 cbvproddavw2.2 . . . . . . . . . . . . 13 ((𝜑𝑗 = 𝑘) → 𝐶 = 𝐷)
75, 6ifbieq1d 4509 . . . . . . . . . . . 12 ((𝜑𝑗 = 𝑘) → if(𝑗𝐴, 𝐶, 1) = if(𝑘𝐵, 𝐷, 1))
87cbvmptdavw 36228 . . . . . . . . . . 11 (𝜑 → (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1)))
98seqeq3d 13950 . . . . . . . . . 10 (𝜑 → seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))))
109breq1d 5112 . . . . . . . . 9 (𝜑 → (seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑦 ↔ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑦))
1110anbi2d 630 . . . . . . . 8 (𝜑 → ((𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑦)))
1211exbidv 1921 . . . . . . 7 (𝜑 → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑦)))
1312rexbidv 3157 . . . . . 6 (𝜑 → (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑦) ↔ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑦)))
148seqeq3d 13950 . . . . . . 7 (𝜑 → seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) = seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))))
1514breq1d 5112 . . . . . 6 (𝜑 → (seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑥 ↔ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑥))
162, 13, 153anbi123d 1438 . . . . 5 (𝜑 → ((𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑥) ↔ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑥)))
1716rexbidv 3157 . . . 4 (𝜑 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑥)))
181f1oeq3d 6779 . . . . . . 7 (𝜑 → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑚)–1-1-onto𝐵))
196cbvcsbdavw 36220 . . . . . . . . . . 11 (𝜑(𝑓𝑛) / 𝑗𝐶 = (𝑓𝑛) / 𝑘𝐷)
2019mpteq2dv 5196 . . . . . . . . . 10 (𝜑 → (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶) = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))
2120seqeq3d 13950 . . . . . . . . 9 (𝜑 → seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶)) = seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷)))
2221fveq1d 6842 . . . . . . . 8 (𝜑 → (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚))
2322eqeq2d 2740 . . . . . . 7 (𝜑 → (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚) ↔ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚)))
2418, 23anbi12d 632 . . . . . 6 (𝜑 → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚))))
2524exbidv 1921 . . . . 5 (𝜑 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚))))
2625rexbidv 3157 . . . 4 (𝜑 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚))))
2717, 26orbi12d 918 . . 3 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚)))))
2827iotabidv 6483 . 2 (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚)))))
29 df-prod 15846 . 2 𝑗𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚))))
30 df-prod 15846 . 2 𝑘𝐵 𝐷 = (℩𝑥(∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚))))
3128, 29, 303eqtr4g 2789 1 (𝜑 → ∏𝑗𝐴 𝐶 = ∏𝑘𝐵 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  csb 3859  wss 3911  ifcif 4484   class class class wbr 5102  cmpt 5183  cio 6450  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045   · cmul 11049  cn 12162  cz 12505  cuz 12769  ...cfz 13444  seqcseq 13942  cli 15426  cprod 15845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-xp 5637  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-iota 6452  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-seq 13943  df-prod 15846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator