| Step | Hyp | Ref
| Expression |
| 1 | | cbvproddavw2.1 |
. . . . . . 7
⊢ (𝜑 → 𝐴 = 𝐵) |
| 2 | 1 | sseq1d 3988 |
. . . . . 6
⊢ (𝜑 → (𝐴 ⊆ (ℤ≥‘𝑚) ↔ 𝐵 ⊆ (ℤ≥‘𝑚))) |
| 3 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 = 𝑘) → 𝑗 = 𝑘) |
| 4 | 1 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 = 𝑘) → 𝐴 = 𝐵) |
| 5 | 3, 4 | eleq12d 2827 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 = 𝑘) → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐵)) |
| 6 | | cbvproddavw2.2 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 = 𝑘) → 𝐶 = 𝐷) |
| 7 | 5, 6 | ifbieq1d 4523 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 = 𝑘) → if(𝑗 ∈ 𝐴, 𝐶, 1) = if(𝑘 ∈ 𝐵, 𝐷, 1)) |
| 8 | 7 | cbvmptdavw 36206 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) |
| 9 | 8 | seqeq3d 14016 |
. . . . . . . . . 10
⊢ (𝜑 → seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1)))) |
| 10 | 9 | breq1d 5126 |
. . . . . . . . 9
⊢ (𝜑 → (seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦 ↔ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑦)) |
| 11 | 10 | anbi2d 630 |
. . . . . . . 8
⊢ (𝜑 → ((𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑦))) |
| 12 | 11 | exbidv 1920 |
. . . . . . 7
⊢ (𝜑 → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑦))) |
| 13 | 12 | rexbidv 3162 |
. . . . . 6
⊢ (𝜑 → (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ↔ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑦))) |
| 14 | 8 | seqeq3d 14016 |
. . . . . . 7
⊢ (𝜑 → seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) = seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1)))) |
| 15 | 14 | breq1d 5126 |
. . . . . 6
⊢ (𝜑 → (seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥 ↔ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑥)) |
| 16 | 2, 13, 15 | 3anbi123d 1437 |
. . . . 5
⊢ (𝜑 → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥) ↔ (𝐵 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑥))) |
| 17 | 16 | rexbidv 3162 |
. . . 4
⊢ (𝜑 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑥))) |
| 18 | 1 | f1oeq3d 6811 |
. . . . . . 7
⊢ (𝜑 → (𝑓:(1...𝑚)–1-1-onto→𝐴 ↔ 𝑓:(1...𝑚)–1-1-onto→𝐵)) |
| 19 | 6 | cbvcsbdavw 36198 |
. . . . . . . . . . 11
⊢ (𝜑 → ⦋(𝑓‘𝑛) / 𝑗⦌𝐶 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐷) |
| 20 | 19 | mpteq2dv 5212 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐶) = (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷)) |
| 21 | 20 | seqeq3d 14016 |
. . . . . . . . 9
⊢ (𝜑 → seq1( · , (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑗⦌𝐶)) = seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷))) |
| 22 | 21 | fveq1d 6874 |
. . . . . . . 8
⊢ (𝜑 → (seq1( · , (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑗⦌𝐶))‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷))‘𝑚)) |
| 23 | 22 | eqeq2d 2745 |
. . . . . . 7
⊢ (𝜑 → (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐶))‘𝑚) ↔ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷))‘𝑚))) |
| 24 | 18, 23 | anbi12d 632 |
. . . . . 6
⊢ (𝜑 → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐶))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐵 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷))‘𝑚)))) |
| 25 | 24 | exbidv 1920 |
. . . . 5
⊢ (𝜑 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐶))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐵 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷))‘𝑚)))) |
| 26 | 25 | rexbidv 3162 |
. . . 4
⊢ (𝜑 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐶))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐵 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷))‘𝑚)))) |
| 27 | 17, 26 | orbi12d 918 |
. . 3
⊢ (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐶))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐵 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷))‘𝑚))))) |
| 28 | 27 | iotabidv 6511 |
. 2
⊢ (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐶))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐵 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷))‘𝑚))))) |
| 29 | | df-prod 15907 |
. 2
⊢
∏𝑗 ∈
𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐶))‘𝑚)))) |
| 30 | | df-prod 15907 |
. 2
⊢
∏𝑘 ∈
𝐵 𝐷 = (℩𝑥(∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐵 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷))‘𝑚)))) |
| 31 | 28, 29, 30 | 3eqtr4g 2794 |
1
⊢ (𝜑 → ∏𝑗 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐷) |