MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbveuALT Structured version   Visualization version   GIF version

Theorem cbveuALT 2610
Description: Alternative proof of cbveu 2609. Since df-eu 2569 combines two other quantifiers, one can base this theorem on their associated 'change bounded variable' kind of theorems as well. (Contributed by Wolf Lammen, 5-Jan-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbveu.1 𝑦𝜑
cbveu.2 𝑥𝜓
cbveu.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbveuALT (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)

Proof of Theorem cbveuALT
StepHypRef Expression
1 cbveu.1 . . . 4 𝑦𝜑
2 cbveu.2 . . . 4 𝑥𝜓
3 cbveu.3 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvex 2399 . . 3 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
51, 2, 3cbvmo 2605 . . 3 (∃*𝑥𝜑 ↔ ∃*𝑦𝜓)
64, 5anbi12i 626 . 2 ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑦𝜓 ∧ ∃*𝑦𝜓))
7 df-eu 2569 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
8 df-eu 2569 . 2 (∃!𝑦𝜓 ↔ (∃𝑦𝜓 ∧ ∃*𝑦𝜓))
96, 7, 83bitr4i 302 1 (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wex 1783  wnf 1787  ∃*wmo 2538  ∃!weu 2568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-11 2156  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator