MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbveuALT Structured version   Visualization version   GIF version

Theorem cbveuALT 2605
Description: Alternative proof of cbveu 2604. Since df-eu 2566 combines two other quantifiers, one can base this theorem on their associated 'change bounded variable' kind of theorems as well. (Contributed by Wolf Lammen, 5-Jan-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbveu.1 𝑦𝜑
cbveu.2 𝑥𝜓
cbveu.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbveuALT (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)

Proof of Theorem cbveuALT
StepHypRef Expression
1 cbveu.1 . . . 4 𝑦𝜑
2 cbveu.2 . . . 4 𝑥𝜓
3 cbveu.3 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvex 2401 . . 3 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
51, 2, 3cbvmo 2601 . . 3 (∃*𝑥𝜑 ↔ ∃*𝑦𝜓)
64, 5anbi12i 628 . 2 ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑦𝜓 ∧ ∃*𝑦𝜓))
7 df-eu 2566 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
8 df-eu 2566 . 2 (∃!𝑦𝜓 ↔ (∃𝑦𝜓 ∧ ∃*𝑦𝜓))
96, 7, 83bitr4i 303 1 (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1780  wnf 1784  ∃*wmo 2535  ∃!weu 2565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-10 2146  ax-11 2162  ax-12 2182  ax-13 2374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator