![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvral | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.) |
Ref | Expression |
---|---|
cbvral.1 | ⊢ Ⅎ𝑦𝜑 |
cbvral.2 | ⊢ Ⅎ𝑥𝜓 |
cbvral.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvral | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2934 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2934 | . 2 ⊢ Ⅎ𝑦𝐴 | |
3 | cbvral.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
4 | cbvral.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
5 | cbvral.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | cbvralf 3361 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 Ⅎwnf 1827 ∀wral 3090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clel 2774 df-nfc 2921 df-ral 3095 |
This theorem is referenced by: cbvralv 3367 cbvralsv 3378 cbviin 4793 disjxun 4886 ralxpf 5516 eqfnfv2f 6580 ralrnmpt 6634 dff13f 6787 ofrfval2 7194 fmpt2x 7518 ovmptss 7541 cbvixp 8213 mptelixpg 8233 boxcutc 8239 xpf1o 8412 indexfi 8564 ixpiunwdom 8787 dfac8clem 9190 acni2 9204 ac6c4 9640 iundom2g 9699 uniimadomf 9704 rabssnn0fi 13109 rlim2 14644 ello1mpt 14669 o1compt 14735 fsum00 14943 iserodd 15955 pcmptdvds 16013 catpropd 16765 invfuc 17030 gsummptnn0fz 18779 gsummptnn0fzOLD 18780 gsummoncoe1 20081 gsumply1eq 20082 fiuncmp 21627 elptr2 21797 ptcld 21836 ptclsg 21838 ptcnplem 21844 cnmpt11 21886 cnmpt21 21894 ovoliunlem3 23719 ovoliun 23720 ovoliun2 23721 finiunmbl 23759 volfiniun 23762 iunmbl 23768 voliun 23769 mbfeqalem1 23856 mbfsup 23879 mbfinf 23880 mbflim 23883 itg2split 23964 itgeqa 24028 itgfsum 24041 itgabs 24049 itggt0 24056 limciun 24106 dvlipcn 24205 dvfsumlem4 24240 dvfsum2 24245 itgsubst 24260 coeeq2 24446 ulmss 24599 leibpi 25132 rlimcnp 25155 o1cxp 25164 lgamgulmlem6 25223 fsumdvdscom 25374 lgseisenlem2 25564 disjunsn 29987 bnj110 31535 bnj1529 31745 poimirlem23 34067 itgabsnc 34113 itggt0cn 34116 totbndbnd 34221 disjinfi 40317 fmptf 40376 climinff 40765 idlimc 40780 fnlimabslt 40833 limsupref 40839 limsupbnd1f 40840 climbddf 40841 climinf2 40861 limsupubuz 40867 climinfmpt 40869 limsupmnf 40875 limsupre2 40879 limsupmnfuz 40881 limsupre3 40887 limsupre3uz 40890 limsupreuz 40891 climuz 40898 lmbr3 40901 liminflelimsup 40930 limsupgt 40932 liminfreuz 40957 liminflt 40959 xlimpnfxnegmnf 40968 xlimmnf 40995 xlimpnf 40996 dfxlim2 41002 cncfshift 41029 stoweidlem31 41189 iundjiun 41615 meaiunincf 41638 pimgtmnf2 41865 smfpimcc 41955 smfsup 41961 smfinflem 41964 smfinf 41965 cbvral2 42145 |
Copyright terms: Public domain | W3C validator |