MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvral Structured version   Visualization version   GIF version

Theorem cbvral 3362
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2377. Use the weaker cbvralw 3306 when possible. (Contributed by NM, 31-Jul-2003.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbvral.1 𝑦𝜑
cbvral.2 𝑥𝜓
cbvral.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvral (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvral
StepHypRef Expression
1 nfcv 2905 . 2 𝑥𝐴
2 nfcv 2905 . 2 𝑦𝐴
3 cbvral.1 . 2 𝑦𝜑
4 cbvral.2 . 2 𝑥𝜓
5 cbvral.3 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
61, 2, 3, 4, 5cbvralf 3360 1 (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wnf 1783  wral 3061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-10 2141  ax-11 2157  ax-12 2177  ax-13 2377
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clel 2816  df-nfc 2892  df-ral 3062
This theorem is referenced by:  cbvralv  3364  cbvralsv  3366  cbviing  5039  ralrnmpt  7116
  Copyright terms: Public domain W3C validator