![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvralv | Structured version Visualization version GIF version |
Description: Change the bound variable of a restricted universal quantifier using implicit substitution. See cbvralvw 3228 based on fewer axioms , but extra disjoint variables. Usage of this theorem is discouraged because it depends on ax-13 2365. Use the weaker cbvralvw 3228 when possible. (Contributed by NM, 28-Jan-1997.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbvralv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvralv | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1909 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1909 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | cbvralv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvral 3352 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wral 3055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-10 2129 ax-11 2146 ax-12 2163 ax-13 2365 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clel 2804 df-nfc 2879 df-ral 3056 |
This theorem is referenced by: cbvral2v 3358 cbvral3v 3360 |
Copyright terms: Public domain | W3C validator |