MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvralsv Structured version   Visualization version   GIF version

Theorem cbvralsv 3366
Description: Change bound variable by using a substitution. Usage of this theorem is discouraged because it depends on ax-13 2377. Use the weaker cbvralsvw 3317 when possible. (Contributed by NM, 20-Nov-2005.) (Revised by Andrew Salmon, 11-Jul-2011.) (New usage is discouraged.)
Assertion
Ref Expression
cbvralsv (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 [𝑦 / 𝑥]𝜑)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem cbvralsv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . 3 𝑧𝜑
2 nfs1v 2156 . . 3 𝑥[𝑧 / 𝑥]𝜑
3 sbequ12 2251 . . 3 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
41, 2, 3cbvral 3362 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑧𝐴 [𝑧 / 𝑥]𝜑)
5 nfv 1914 . . . 4 𝑦𝜑
65nfsb 2528 . . 3 𝑦[𝑧 / 𝑥]𝜑
7 nfv 1914 . . 3 𝑧[𝑦 / 𝑥]𝜑
8 sbequ 2083 . . 3 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
96, 7, 8cbvral 3362 . 2 (∀𝑧𝐴 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦𝐴 [𝑦 / 𝑥]𝜑)
104, 9bitri 275 1 (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 [𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  [wsb 2064  wral 3061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-10 2141  ax-11 2157  ax-12 2177  ax-13 2377
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clel 2816  df-nfc 2892  df-ral 3062
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator