| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvralsv | Structured version Visualization version GIF version | ||
| Description: Change bound variable by using a substitution. Usage of this theorem is discouraged because it depends on ax-13 2377. Use the weaker cbvralsvw 3300 when possible. (Contributed by NM, 20-Nov-2005.) (Revised by Andrew Salmon, 11-Jul-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cbvralsv | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
| 2 | nfs1v 2157 | . . 3 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
| 3 | sbequ12 2252 | . . 3 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
| 4 | 1, 2, 3 | cbvral 3346 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑧 ∈ 𝐴 [𝑧 / 𝑥]𝜑) |
| 5 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 6 | 5 | nfsb 2528 | . . 3 ⊢ Ⅎ𝑦[𝑧 / 𝑥]𝜑 |
| 7 | nfv 1914 | . . 3 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 | |
| 8 | sbequ 2084 | . . 3 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 9 | 6, 7, 8 | cbvral 3346 | . 2 ⊢ (∀𝑧 ∈ 𝐴 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
| 10 | 4, 9 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2065 ∀wral 3052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clel 2810 df-nfc 2886 df-ral 3053 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |