MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrnmpt Structured version   Visualization version   GIF version

Theorem ralrnmpt 7050
Description: A restricted quantifier over an image set. Usage of this theorem is discouraged because it depends on ax-13 2370. Use the weaker ralrnmptw 7048 when possible. (Contributed by Mario Carneiro, 20-Aug-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
ralrnmpt.1 𝐹 = (𝑥𝐴𝐵)
ralrnmpt.2 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
ralrnmpt (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 𝜒))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐵   𝜒,𝑦   𝑦,𝐹   𝜓,𝑥
Allowed substitution hints:   𝜓(𝑦)   𝜒(𝑥)   𝐴(𝑦)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem ralrnmpt
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ralrnmpt.1 . . . . 5 𝐹 = (𝑥𝐴𝐵)
21fnmpt 6640 . . . 4 (∀𝑥𝐴 𝐵𝑉𝐹 Fn 𝐴)
3 dfsbcq 3752 . . . . 5 (𝑤 = (𝐹𝑧) → ([𝑤 / 𝑦]𝜓[(𝐹𝑧) / 𝑦]𝜓))
43ralrn 7042 . . . 4 (𝐹 Fn 𝐴 → (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑧𝐴 [(𝐹𝑧) / 𝑦]𝜓))
52, 4syl 17 . . 3 (∀𝑥𝐴 𝐵𝑉 → (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑧𝐴 [(𝐹𝑧) / 𝑦]𝜓))
6 nfv 1914 . . . . 5 𝑤𝜓
7 nfsbc1v 3770 . . . . 5 𝑦[𝑤 / 𝑦]𝜓
8 sbceq1a 3761 . . . . 5 (𝑦 = 𝑤 → (𝜓[𝑤 / 𝑦]𝜓))
96, 7, 8cbvral 3333 . . . 4 (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓)
109bicomi 224 . . 3 (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑦 ∈ ran 𝐹𝜓)
11 nfmpt1 5201 . . . . . . 7 𝑥(𝑥𝐴𝐵)
121, 11nfcxfr 2889 . . . . . 6 𝑥𝐹
13 nfcv 2891 . . . . . 6 𝑥𝑧
1412, 13nffv 6850 . . . . 5 𝑥(𝐹𝑧)
15 nfv 1914 . . . . 5 𝑥𝜓
1614, 15nfsbc 3775 . . . 4 𝑥[(𝐹𝑧) / 𝑦]𝜓
17 nfv 1914 . . . 4 𝑧[(𝐹𝑥) / 𝑦]𝜓
18 fveq2 6840 . . . . 5 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
1918sbceq1d 3755 . . . 4 (𝑧 = 𝑥 → ([(𝐹𝑧) / 𝑦]𝜓[(𝐹𝑥) / 𝑦]𝜓))
2016, 17, 19cbvral 3333 . . 3 (∀𝑧𝐴 [(𝐹𝑧) / 𝑦]𝜓 ↔ ∀𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓)
215, 10, 203bitr3g 313 . 2 (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓))
221fvmpt2 6961 . . . . . 6 ((𝑥𝐴𝐵𝑉) → (𝐹𝑥) = 𝐵)
2322sbceq1d 3755 . . . . 5 ((𝑥𝐴𝐵𝑉) → ([(𝐹𝑥) / 𝑦]𝜓[𝐵 / 𝑦]𝜓))
24 ralrnmpt.2 . . . . . . 7 (𝑦 = 𝐵 → (𝜓𝜒))
2524sbcieg 3790 . . . . . 6 (𝐵𝑉 → ([𝐵 / 𝑦]𝜓𝜒))
2625adantl 481 . . . . 5 ((𝑥𝐴𝐵𝑉) → ([𝐵 / 𝑦]𝜓𝜒))
2723, 26bitrd 279 . . . 4 ((𝑥𝐴𝐵𝑉) → ([(𝐹𝑥) / 𝑦]𝜓𝜒))
2827ralimiaa 3065 . . 3 (∀𝑥𝐴 𝐵𝑉 → ∀𝑥𝐴 ([(𝐹𝑥) / 𝑦]𝜓𝜒))
29 ralbi 3085 . . 3 (∀𝑥𝐴 ([(𝐹𝑥) / 𝑦]𝜓𝜒) → (∀𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓 ↔ ∀𝑥𝐴 𝜒))
3028, 29syl 17 . 2 (∀𝑥𝐴 𝐵𝑉 → (∀𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓 ↔ ∀𝑥𝐴 𝜒))
3121, 30bitrd 279 1 (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  [wsbc 3750  cmpt 5183  ran crn 5632   Fn wfn 6494  cfv 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-13 2370  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507
This theorem is referenced by:  rexrnmpt  7051
  Copyright terms: Public domain W3C validator