MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrnmpt Structured version   Visualization version   GIF version

Theorem ralrnmpt 7086
Description: A restricted quantifier over an image set. Usage of this theorem is discouraged because it depends on ax-13 2376. Use the weaker ralrnmptw 7084 when possible. (Contributed by Mario Carneiro, 20-Aug-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
ralrnmpt.1 𝐹 = (𝑥𝐴𝐵)
ralrnmpt.2 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
ralrnmpt (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 𝜒))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐵   𝜒,𝑦   𝑦,𝐹   𝜓,𝑥
Allowed substitution hints:   𝜓(𝑦)   𝜒(𝑥)   𝐴(𝑦)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem ralrnmpt
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ralrnmpt.1 . . . . 5 𝐹 = (𝑥𝐴𝐵)
21fnmpt 6678 . . . 4 (∀𝑥𝐴 𝐵𝑉𝐹 Fn 𝐴)
3 dfsbcq 3767 . . . . 5 (𝑤 = (𝐹𝑧) → ([𝑤 / 𝑦]𝜓[(𝐹𝑧) / 𝑦]𝜓))
43ralrn 7078 . . . 4 (𝐹 Fn 𝐴 → (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑧𝐴 [(𝐹𝑧) / 𝑦]𝜓))
52, 4syl 17 . . 3 (∀𝑥𝐴 𝐵𝑉 → (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑧𝐴 [(𝐹𝑧) / 𝑦]𝜓))
6 nfv 1914 . . . . 5 𝑤𝜓
7 nfsbc1v 3785 . . . . 5 𝑦[𝑤 / 𝑦]𝜓
8 sbceq1a 3776 . . . . 5 (𝑦 = 𝑤 → (𝜓[𝑤 / 𝑦]𝜓))
96, 7, 8cbvral 3341 . . . 4 (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓)
109bicomi 224 . . 3 (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑦 ∈ ran 𝐹𝜓)
11 nfmpt1 5220 . . . . . . 7 𝑥(𝑥𝐴𝐵)
121, 11nfcxfr 2896 . . . . . 6 𝑥𝐹
13 nfcv 2898 . . . . . 6 𝑥𝑧
1412, 13nffv 6886 . . . . 5 𝑥(𝐹𝑧)
15 nfv 1914 . . . . 5 𝑥𝜓
1614, 15nfsbc 3790 . . . 4 𝑥[(𝐹𝑧) / 𝑦]𝜓
17 nfv 1914 . . . 4 𝑧[(𝐹𝑥) / 𝑦]𝜓
18 fveq2 6876 . . . . 5 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
1918sbceq1d 3770 . . . 4 (𝑧 = 𝑥 → ([(𝐹𝑧) / 𝑦]𝜓[(𝐹𝑥) / 𝑦]𝜓))
2016, 17, 19cbvral 3341 . . 3 (∀𝑧𝐴 [(𝐹𝑧) / 𝑦]𝜓 ↔ ∀𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓)
215, 10, 203bitr3g 313 . 2 (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓))
221fvmpt2 6997 . . . . . 6 ((𝑥𝐴𝐵𝑉) → (𝐹𝑥) = 𝐵)
2322sbceq1d 3770 . . . . 5 ((𝑥𝐴𝐵𝑉) → ([(𝐹𝑥) / 𝑦]𝜓[𝐵 / 𝑦]𝜓))
24 ralrnmpt.2 . . . . . . 7 (𝑦 = 𝐵 → (𝜓𝜒))
2524sbcieg 3805 . . . . . 6 (𝐵𝑉 → ([𝐵 / 𝑦]𝜓𝜒))
2625adantl 481 . . . . 5 ((𝑥𝐴𝐵𝑉) → ([𝐵 / 𝑦]𝜓𝜒))
2723, 26bitrd 279 . . . 4 ((𝑥𝐴𝐵𝑉) → ([(𝐹𝑥) / 𝑦]𝜓𝜒))
2827ralimiaa 3072 . . 3 (∀𝑥𝐴 𝐵𝑉 → ∀𝑥𝐴 ([(𝐹𝑥) / 𝑦]𝜓𝜒))
29 ralbi 3092 . . 3 (∀𝑥𝐴 ([(𝐹𝑥) / 𝑦]𝜓𝜒) → (∀𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓 ↔ ∀𝑥𝐴 𝜒))
3028, 29syl 17 . 2 (∀𝑥𝐴 𝐵𝑉 → (∀𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓 ↔ ∀𝑥𝐴 𝜒))
3121, 30bitrd 279 1 (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  [wsbc 3765  cmpt 5201  ran crn 5655   Fn wfn 6526  cfv 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-13 2376  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-fv 6539
This theorem is referenced by:  rexrnmpt  7087
  Copyright terms: Public domain W3C validator