| Step | Hyp | Ref
| Expression |
| 1 | | ralrnmpt.1 |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 2 | 1 | fnmpt 6708 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
| 3 | | dfsbcq 3790 |
. . . . 5
⊢ (𝑤 = (𝐹‘𝑧) → ([𝑤 / 𝑦]𝜓 ↔ [(𝐹‘𝑧) / 𝑦]𝜓)) |
| 4 | 3 | ralrn 7108 |
. . . 4
⊢ (𝐹 Fn 𝐴 → (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑧 ∈ 𝐴 [(𝐹‘𝑧) / 𝑦]𝜓)) |
| 5 | 2, 4 | syl 17 |
. . 3
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 → (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑧 ∈ 𝐴 [(𝐹‘𝑧) / 𝑦]𝜓)) |
| 6 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑤𝜓 |
| 7 | | nfsbc1v 3808 |
. . . . 5
⊢
Ⅎ𝑦[𝑤 / 𝑦]𝜓 |
| 8 | | sbceq1a 3799 |
. . . . 5
⊢ (𝑦 = 𝑤 → (𝜓 ↔ [𝑤 / 𝑦]𝜓)) |
| 9 | 6, 7, 8 | cbvral 3362 |
. . . 4
⊢
(∀𝑦 ∈
ran 𝐹𝜓 ↔ ∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓) |
| 10 | 9 | bicomi 224 |
. . 3
⊢
(∀𝑤 ∈
ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑦 ∈ ran 𝐹𝜓) |
| 11 | | nfmpt1 5250 |
. . . . . . 7
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
| 12 | 1, 11 | nfcxfr 2903 |
. . . . . 6
⊢
Ⅎ𝑥𝐹 |
| 13 | | nfcv 2905 |
. . . . . 6
⊢
Ⅎ𝑥𝑧 |
| 14 | 12, 13 | nffv 6916 |
. . . . 5
⊢
Ⅎ𝑥(𝐹‘𝑧) |
| 15 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑥𝜓 |
| 16 | 14, 15 | nfsbc 3813 |
. . . 4
⊢
Ⅎ𝑥[(𝐹‘𝑧) / 𝑦]𝜓 |
| 17 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑧[(𝐹‘𝑥) / 𝑦]𝜓 |
| 18 | | fveq2 6906 |
. . . . 5
⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) |
| 19 | 18 | sbceq1d 3793 |
. . . 4
⊢ (𝑧 = 𝑥 → ([(𝐹‘𝑧) / 𝑦]𝜓 ↔ [(𝐹‘𝑥) / 𝑦]𝜓)) |
| 20 | 16, 17, 19 | cbvral 3362 |
. . 3
⊢
(∀𝑧 ∈
𝐴 [(𝐹‘𝑧) / 𝑦]𝜓 ↔ ∀𝑥 ∈ 𝐴 [(𝐹‘𝑥) / 𝑦]𝜓) |
| 21 | 5, 10, 20 | 3bitr3g 313 |
. 2
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥 ∈ 𝐴 [(𝐹‘𝑥) / 𝑦]𝜓)) |
| 22 | 1 | fvmpt2 7027 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → (𝐹‘𝑥) = 𝐵) |
| 23 | 22 | sbceq1d 3793 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ [𝐵 / 𝑦]𝜓)) |
| 24 | | ralrnmpt.2 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| 25 | 24 | sbcieg 3828 |
. . . . . 6
⊢ (𝐵 ∈ 𝑉 → ([𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
| 26 | 25 | adantl 481 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ([𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
| 27 | 23, 26 | bitrd 279 |
. . . 4
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ 𝜒)) |
| 28 | 27 | ralimiaa 3082 |
. . 3
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ 𝜒)) |
| 29 | | ralbi 3103 |
. . 3
⊢
(∀𝑥 ∈
𝐴 ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ 𝜒) → (∀𝑥 ∈ 𝐴 [(𝐹‘𝑥) / 𝑦]𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| 30 | 28, 29 | syl 17 |
. 2
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 [(𝐹‘𝑥) / 𝑦]𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| 31 | 21, 30 | bitrd 279 |
1
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |