![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvrexf | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 9-Oct-2016.) |
Ref | Expression |
---|---|
cbvralf.1 | ⊢ Ⅎ𝑥𝐴 |
cbvralf.2 | ⊢ Ⅎ𝑦𝐴 |
cbvralf.3 | ⊢ Ⅎ𝑦𝜑 |
cbvralf.4 | ⊢ Ⅎ𝑥𝜓 |
cbvralf.5 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrexf | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvralf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | cbvralf.2 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
3 | cbvralf.3 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
4 | 3 | nfn 1842 | . . . 4 ⊢ Ⅎ𝑦 ¬ 𝜑 |
5 | cbvralf.4 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
6 | 5 | nfn 1842 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜓 |
7 | cbvralf.5 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
8 | 7 | notbid 319 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
9 | 1, 2, 4, 6, 8 | cbvralf 3399 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝜓) |
10 | 9 | notbii 321 | . 2 ⊢ (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑦 ∈ 𝐴 ¬ 𝜓) |
11 | dfrex2 3205 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
12 | dfrex2 3205 | . 2 ⊢ (∃𝑦 ∈ 𝐴 𝜓 ↔ ¬ ∀𝑦 ∈ 𝐴 ¬ 𝜓) | |
13 | 10, 11, 12 | 3bitr4i 304 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 Ⅎwnf 1769 Ⅎwnfc 2935 ∀wral 3107 ∃wrex 3108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-clel 2865 df-nfc 2937 df-ral 3112 df-rex 3113 |
This theorem is referenced by: cbvrex 3402 reusv2lem4 5200 reusv2 5202 nnwof 12167 cbviunf 29993 ac6sf2 30056 dfimafnf 30067 aciunf1lem 30093 bnj1400 31720 phpreu 34428 poimirlem26 34470 indexa 34561 evth2f 40832 fvelrnbf 40835 evthf 40844 eliin2f 40931 stoweidlem34 41883 ovnlerp 42408 |
Copyright terms: Public domain | W3C validator |