| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvrexf | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvrexfw 3273 when possible. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 9-Oct-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cbvralf.1 | ⊢ Ⅎ𝑥𝐴 |
| cbvralf.2 | ⊢ Ⅎ𝑦𝐴 |
| cbvralf.3 | ⊢ Ⅎ𝑦𝜑 |
| cbvralf.4 | ⊢ Ⅎ𝑥𝜓 |
| cbvralf.5 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvrexf | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvralf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | cbvralf.2 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
| 3 | cbvralf.3 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 4 | 3 | nfn 1858 | . . . 4 ⊢ Ⅎ𝑦 ¬ 𝜑 |
| 5 | cbvralf.4 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 6 | 5 | nfn 1858 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜓 |
| 7 | cbvralf.5 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 8 | 7 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 9 | 1, 2, 4, 6, 8 | cbvralf 3326 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝜓) |
| 10 | 9 | notbii 320 | . 2 ⊢ (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑦 ∈ 𝐴 ¬ 𝜓) |
| 11 | dfrex2 3059 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 12 | dfrex2 3059 | . 2 ⊢ (∃𝑦 ∈ 𝐴 𝜓 ↔ ¬ ∀𝑦 ∈ 𝐴 ¬ 𝜓) | |
| 13 | 10, 11, 12 | 3bitr4i 303 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 Ⅎwnf 1784 Ⅎwnfc 2879 ∀wral 3047 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-10 2144 ax-11 2160 ax-12 2180 ax-13 2372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: cbvrex 3329 |
| Copyright terms: Public domain | W3C validator |