Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvrexf | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvrexfw 3370 when possible. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 9-Oct-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbvralf.1 | ⊢ Ⅎ𝑥𝐴 |
cbvralf.2 | ⊢ Ⅎ𝑦𝐴 |
cbvralf.3 | ⊢ Ⅎ𝑦𝜑 |
cbvralf.4 | ⊢ Ⅎ𝑥𝜓 |
cbvralf.5 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrexf | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvralf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | cbvralf.2 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
3 | cbvralf.3 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
4 | 3 | nfn 1860 | . . . 4 ⊢ Ⅎ𝑦 ¬ 𝜑 |
5 | cbvralf.4 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
6 | 5 | nfn 1860 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜓 |
7 | cbvralf.5 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
8 | 7 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
9 | 1, 2, 4, 6, 8 | cbvralf 3371 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝜓) |
10 | 9 | notbii 320 | . 2 ⊢ (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑦 ∈ 𝐴 ¬ 𝜓) |
11 | dfrex2 3170 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
12 | dfrex2 3170 | . 2 ⊢ (∃𝑦 ∈ 𝐴 𝜓 ↔ ¬ ∀𝑦 ∈ 𝐴 ¬ 𝜓) | |
13 | 10, 11, 12 | 3bitr4i 303 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 Ⅎwnf 1786 Ⅎwnfc 2887 ∀wral 3064 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-10 2137 ax-11 2154 ax-12 2171 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 |
This theorem is referenced by: cbvrex 3380 |
Copyright terms: Public domain | W3C validator |