MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrexf Structured version   Visualization version   GIF version

Theorem cbvrexf 3372
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvrexfw 3370 when possible. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 9-Oct-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbvralf.1 𝑥𝐴
cbvralf.2 𝑦𝐴
cbvralf.3 𝑦𝜑
cbvralf.4 𝑥𝜓
cbvralf.5 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrexf (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)

Proof of Theorem cbvrexf
StepHypRef Expression
1 cbvralf.1 . . . 4 𝑥𝐴
2 cbvralf.2 . . . 4 𝑦𝐴
3 cbvralf.3 . . . . 5 𝑦𝜑
43nfn 1860 . . . 4 𝑦 ¬ 𝜑
5 cbvralf.4 . . . . 5 𝑥𝜓
65nfn 1860 . . . 4 𝑥 ¬ 𝜓
7 cbvralf.5 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
87notbid 318 . . . 4 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
91, 2, 4, 6, 8cbvralf 3371 . . 3 (∀𝑥𝐴 ¬ 𝜑 ↔ ∀𝑦𝐴 ¬ 𝜓)
109notbii 320 . 2 (¬ ∀𝑥𝐴 ¬ 𝜑 ↔ ¬ ∀𝑦𝐴 ¬ 𝜓)
11 dfrex2 3170 . 2 (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥𝐴 ¬ 𝜑)
12 dfrex2 3170 . 2 (∃𝑦𝐴 𝜓 ↔ ¬ ∀𝑦𝐴 ¬ 𝜓)
1310, 11, 123bitr4i 303 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wnf 1786  wnfc 2887  wral 3064  wrex 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070
This theorem is referenced by:  cbvrex  3380
  Copyright terms: Public domain W3C validator