Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvrexsv | Structured version Visualization version GIF version |
Description: Change bound variable by using a substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvrexsvw 3403 when possible. (Contributed by NM, 2-Mar-2008.) (Revised by Andrew Salmon, 11-Jul-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbvrexsv | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
2 | nfs1v 2153 | . . 3 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
3 | sbequ12 2244 | . . 3 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
4 | 1, 2, 3 | cbvrex 3380 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑧 ∈ 𝐴 [𝑧 / 𝑥]𝜑) |
5 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
6 | 5 | nfsb 2527 | . . 3 ⊢ Ⅎ𝑦[𝑧 / 𝑥]𝜑 |
7 | nfv 1917 | . . 3 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 | |
8 | sbequ 2086 | . . 3 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
9 | 6, 7, 8 | cbvrex 3380 | . 2 ⊢ (∃𝑧 ∈ 𝐴 [𝑧 / 𝑥]𝜑 ↔ ∃𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
10 | 4, 9 | bitri 274 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2067 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-10 2137 ax-11 2154 ax-12 2171 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 |
This theorem is referenced by: cbvexsv 42167 |
Copyright terms: Public domain | W3C validator |