![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvrexsv | Structured version Visualization version GIF version |
Description: Change bound variable by using a substitution. Usage of this theorem is discouraged because it depends on ax-13 2365. Use the weaker cbvrexsvw 3309 when possible. (Contributed by NM, 2-Mar-2008.) (Revised by Andrew Salmon, 11-Jul-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbvrexsv | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1909 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
2 | nfs1v 2145 | . . 3 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
3 | sbequ12 2235 | . . 3 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
4 | 1, 2, 3 | cbvrex 3353 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑧 ∈ 𝐴 [𝑧 / 𝑥]𝜑) |
5 | nfv 1909 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
6 | 5 | nfsb 2516 | . . 3 ⊢ Ⅎ𝑦[𝑧 / 𝑥]𝜑 |
7 | nfv 1909 | . . 3 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 | |
8 | sbequ 2078 | . . 3 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
9 | 6, 7, 8 | cbvrex 3353 | . 2 ⊢ (∃𝑧 ∈ 𝐴 [𝑧 / 𝑥]𝜑 ↔ ∃𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
10 | 4, 9 | bitri 275 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2059 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-10 2129 ax-11 2146 ax-12 2163 ax-13 2365 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 |
This theorem is referenced by: cbvexsv 43881 |
Copyright terms: Public domain | W3C validator |