MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvralv2 Structured version   Visualization version   GIF version

Theorem cbvralv2 3960
Description: Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. Usage of this theorem is discouraged because it depends on ax-13 2377. (Contributed by David Moews, 1-May-2017.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbvralv2.1 (𝑥 = 𝑦 → (𝜓𝜒))
cbvralv2.2 (𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
cbvralv2 (∀𝑥𝐴 𝜓 ↔ ∀𝑦𝐵 𝜒)
Distinct variable groups:   𝑦,𝐴   𝜓,𝑦   𝑥,𝐵   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem cbvralv2
StepHypRef Expression
1 nfcv 2905 . 2 𝑦𝐴
2 nfcv 2905 . 2 𝑥𝐵
3 nfv 1914 . 2 𝑦𝜓
4 nfv 1914 . 2 𝑥𝜒
5 cbvralv2.2 . 2 (𝑥 = 𝑦𝐴 = 𝐵)
6 cbvralv2.1 . 2 (𝑥 = 𝑦 → (𝜓𝜒))
71, 2, 3, 4, 5, 6cbvralcsf 3956 1 (∀𝑥𝐴 𝜓 ↔ ∀𝑦𝐵 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wral 3061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-13 2377  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-sbc 3795  df-csb 3912
This theorem is referenced by:  pgindnf  49072
  Copyright terms: Public domain W3C validator