| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvralv2 | Structured version Visualization version GIF version | ||
| Description: Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. Usage of this theorem is discouraged because it depends on ax-13 2375. (Contributed by David Moews, 1-May-2017.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cbvralv2.1 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) |
| cbvralv2.2 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| cbvralv2 | ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2897 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 2 | nfcv 2897 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | nfv 1913 | . 2 ⊢ Ⅎ𝑦𝜓 | |
| 4 | nfv 1913 | . 2 ⊢ Ⅎ𝑥𝜒 | |
| 5 | cbvralv2.2 | . 2 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
| 6 | cbvralv2.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) | |
| 7 | 1, 2, 3, 4, 5, 6 | cbvralcsf 3921 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∀wral 3050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-13 2375 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-sbc 3771 df-csb 3880 |
| This theorem is referenced by: pgindnf 49243 |
| Copyright terms: Public domain | W3C validator |