|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cbvrexv2 | Structured version Visualization version GIF version | ||
| Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. Usage of this theorem is discouraged because it depends on ax-13 2377. (Contributed by David Moews, 1-May-2017.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| cbvralv2.1 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) | 
| cbvralv2.2 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | 
| Ref | Expression | 
|---|---|
| cbvrexv2 | ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfcv 2905 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 2 | nfcv 2905 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | nfv 1914 | . 2 ⊢ Ⅎ𝑦𝜓 | |
| 4 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜒 | |
| 5 | cbvralv2.2 | . 2 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
| 6 | cbvralv2.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) | |
| 7 | 1, 2, 3, 4, 5, 6 | cbvrexcsf 3942 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wrex 3070 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2377 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-sbc 3789 df-csb 3900 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |