MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrexfw Structured version   Visualization version   GIF version

Theorem cbvrexfw 3273
Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexf 3327 with a disjoint variable condition, which does not require ax-13 2372. For a version not dependent on ax-11 2160 and ax-12, see cbvrexvw 3211. (Contributed by FL, 27-Apr-2008.) Avoid ax-10 2144, ax-13 2372. (Revised by GG, 10-Jan-2024.)
Hypotheses
Ref Expression
cbvrexfw.1 𝑥𝐴
cbvrexfw.2 𝑦𝐴
cbvrexfw.3 𝑦𝜑
cbvrexfw.4 𝑥𝜓
cbvrexfw.5 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrexfw (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem cbvrexfw
StepHypRef Expression
1 cbvrexfw.1 . . . 4 𝑥𝐴
2 cbvrexfw.2 . . . 4 𝑦𝐴
3 cbvrexfw.3 . . . . 5 𝑦𝜑
43nfn 1858 . . . 4 𝑦 ¬ 𝜑
5 cbvrexfw.4 . . . . 5 𝑥𝜓
65nfn 1858 . . . 4 𝑥 ¬ 𝜓
7 cbvrexfw.5 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
87notbid 318 . . . 4 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
91, 2, 4, 6, 8cbvralfw 3272 . . 3 (∀𝑥𝐴 ¬ 𝜑 ↔ ∀𝑦𝐴 ¬ 𝜓)
10 ralnex 3058 . . 3 (∀𝑥𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥𝐴 𝜑)
11 ralnex 3058 . . 3 (∀𝑦𝐴 ¬ 𝜓 ↔ ¬ ∃𝑦𝐴 𝜓)
129, 10, 113bitr3i 301 . 2 (¬ ∃𝑥𝐴 𝜑 ↔ ¬ ∃𝑦𝐴 𝜓)
1312con4bii 321 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wnf 1784  wnfc 2879  wral 3047  wrex 3056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-11 2160  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-nf 1785  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057
This theorem is referenced by:  cbvrexw  3275  reusv2lem4  5337  reusv2  5339  nnwof  12812  cbviunf  32535  ac6sf2  32605  dfimafnf  32618  aciunf1lem  32644  bnj1400  34847  phpreu  37652  poimirlem26  37694  indexa  37781  evth2f  45060  fvelrnbf  45063  evthf  45072  eliin2f  45149  stoweidlem34  46080  ovnlerp  46608
  Copyright terms: Public domain W3C validator