| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvrexfw | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexf 3335 with a disjoint variable condition, which does not require ax-13 2370. For a version not dependent on ax-11 2158 and ax-12, see cbvrexvw 3216. (Contributed by FL, 27-Apr-2008.) Avoid ax-10 2142, ax-13 2370. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvrexfw.1 | ⊢ Ⅎ𝑥𝐴 |
| cbvrexfw.2 | ⊢ Ⅎ𝑦𝐴 |
| cbvrexfw.3 | ⊢ Ⅎ𝑦𝜑 |
| cbvrexfw.4 | ⊢ Ⅎ𝑥𝜓 |
| cbvrexfw.5 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvrexfw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvrexfw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | cbvrexfw.2 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
| 3 | cbvrexfw.3 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 4 | 3 | nfn 1857 | . . . 4 ⊢ Ⅎ𝑦 ¬ 𝜑 |
| 5 | cbvrexfw.4 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 6 | 5 | nfn 1857 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜓 |
| 7 | cbvrexfw.5 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 8 | 7 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 9 | 1, 2, 4, 6, 8 | cbvralfw 3278 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝜓) |
| 10 | ralnex 3055 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | |
| 11 | ralnex 3055 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑦 ∈ 𝐴 𝜓) | |
| 12 | 9, 10, 11 | 3bitr3i 301 | . 2 ⊢ (¬ ∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐴 𝜓) |
| 13 | 12 | con4bii 321 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 Ⅎwnf 1783 Ⅎwnfc 2876 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: cbvrexw 3281 reusv2lem4 5356 reusv2 5358 nnwof 12873 cbviunf 32484 ac6sf2 32548 dfimafnf 32560 aciunf1lem 32586 bnj1400 34825 phpreu 37598 poimirlem26 37640 indexa 37727 evth2f 45009 fvelrnbf 45012 evthf 45021 eliin2f 45098 stoweidlem34 46032 ovnlerp 46560 |
| Copyright terms: Public domain | W3C validator |