| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvrexfw | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexf 3345 with a disjoint variable condition, which does not require ax-13 2377. For a version not dependent on ax-11 2158 and ax-12, see cbvrexvw 3225. (Contributed by FL, 27-Apr-2008.) Avoid ax-10 2142, ax-13 2377. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvrexfw.1 | ⊢ Ⅎ𝑥𝐴 |
| cbvrexfw.2 | ⊢ Ⅎ𝑦𝐴 |
| cbvrexfw.3 | ⊢ Ⅎ𝑦𝜑 |
| cbvrexfw.4 | ⊢ Ⅎ𝑥𝜓 |
| cbvrexfw.5 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvrexfw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvrexfw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | cbvrexfw.2 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
| 3 | cbvrexfw.3 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 4 | 3 | nfn 1857 | . . . 4 ⊢ Ⅎ𝑦 ¬ 𝜑 |
| 5 | cbvrexfw.4 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 6 | 5 | nfn 1857 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜓 |
| 7 | cbvrexfw.5 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 8 | 7 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 9 | 1, 2, 4, 6, 8 | cbvralfw 3288 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝜓) |
| 10 | ralnex 3063 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | |
| 11 | ralnex 3063 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑦 ∈ 𝐴 𝜓) | |
| 12 | 9, 10, 11 | 3bitr3i 301 | . 2 ⊢ (¬ ∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐴 𝜓) |
| 13 | 12 | con4bii 321 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 Ⅎwnf 1783 Ⅎwnfc 2884 ∀wral 3052 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 |
| This theorem is referenced by: cbvrexw 3291 reusv2lem4 5376 reusv2 5378 nnwof 12935 cbviunf 32541 ac6sf2 32607 dfimafnf 32619 aciunf1lem 32645 bnj1400 34871 phpreu 37633 poimirlem26 37675 indexa 37762 evth2f 45006 fvelrnbf 45009 evthf 45018 eliin2f 45095 stoweidlem34 46030 ovnlerp 46558 |
| Copyright terms: Public domain | W3C validator |