Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvrexfw | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexf 3372 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by FL, 27-Apr-2008.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvrexfw.1 | ⊢ Ⅎ𝑥𝐴 |
cbvrexfw.2 | ⊢ Ⅎ𝑦𝐴 |
cbvrexfw.3 | ⊢ Ⅎ𝑦𝜑 |
cbvrexfw.4 | ⊢ Ⅎ𝑥𝜓 |
cbvrexfw.5 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrexfw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvrexfw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | cbvrexfw.2 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
3 | cbvrexfw.3 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
4 | 3 | nfn 1860 | . . . 4 ⊢ Ⅎ𝑦 ¬ 𝜑 |
5 | cbvrexfw.4 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
6 | 5 | nfn 1860 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜓 |
7 | cbvrexfw.5 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
8 | 7 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
9 | 1, 2, 4, 6, 8 | cbvralfw 3368 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝜓) |
10 | ralnex 3167 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | |
11 | ralnex 3167 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑦 ∈ 𝐴 𝜓) | |
12 | 9, 10, 11 | 3bitr3i 301 | . 2 ⊢ (¬ ∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐴 𝜓) |
13 | 12 | con4bii 321 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 Ⅎwnf 1786 Ⅎwnfc 2887 ∀wral 3064 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-nf 1787 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 |
This theorem is referenced by: cbvrexw 3374 reusv2lem4 5324 reusv2 5326 nnwof 12654 cbviunf 30895 ac6sf2 30960 dfimafnf 30971 aciunf1lem 30999 bnj1400 32815 phpreu 35761 poimirlem26 35803 indexa 35891 evth2f 42558 fvelrnbf 42561 evthf 42570 eliin2f 42654 stoweidlem34 43575 ovnlerp 44100 |
Copyright terms: Public domain | W3C validator |