| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvrexfw | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexf 3327 with a disjoint variable condition, which does not require ax-13 2372. For a version not dependent on ax-11 2160 and ax-12, see cbvrexvw 3211. (Contributed by FL, 27-Apr-2008.) Avoid ax-10 2144, ax-13 2372. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvrexfw.1 | ⊢ Ⅎ𝑥𝐴 |
| cbvrexfw.2 | ⊢ Ⅎ𝑦𝐴 |
| cbvrexfw.3 | ⊢ Ⅎ𝑦𝜑 |
| cbvrexfw.4 | ⊢ Ⅎ𝑥𝜓 |
| cbvrexfw.5 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvrexfw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvrexfw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | cbvrexfw.2 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
| 3 | cbvrexfw.3 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 4 | 3 | nfn 1858 | . . . 4 ⊢ Ⅎ𝑦 ¬ 𝜑 |
| 5 | cbvrexfw.4 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 6 | 5 | nfn 1858 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜓 |
| 7 | cbvrexfw.5 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 8 | 7 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 9 | 1, 2, 4, 6, 8 | cbvralfw 3272 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝜓) |
| 10 | ralnex 3058 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | |
| 11 | ralnex 3058 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑦 ∈ 𝐴 𝜓) | |
| 12 | 9, 10, 11 | 3bitr3i 301 | . 2 ⊢ (¬ ∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐴 𝜓) |
| 13 | 12 | con4bii 321 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 Ⅎwnf 1784 Ⅎwnfc 2879 ∀wral 3047 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: cbvrexw 3275 reusv2lem4 5337 reusv2 5339 nnwof 12812 cbviunf 32535 ac6sf2 32605 dfimafnf 32618 aciunf1lem 32644 bnj1400 34847 phpreu 37652 poimirlem26 37694 indexa 37781 evth2f 45060 fvelrnbf 45063 evthf 45072 eliin2f 45149 stoweidlem34 46080 ovnlerp 46608 |
| Copyright terms: Public domain | W3C validator |