Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvrexfw | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexf 3330 with a disjoint variable condition, which does not require ax-13 2370. For a version not dependent on ax-11 2153 and ax-12, see cbvrexvw 3222. (Contributed by FL, 27-Apr-2008.) Avoid ax-10 2136, ax-13 2370. (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvrexfw.1 | ⊢ Ⅎ𝑥𝐴 |
cbvrexfw.2 | ⊢ Ⅎ𝑦𝐴 |
cbvrexfw.3 | ⊢ Ⅎ𝑦𝜑 |
cbvrexfw.4 | ⊢ Ⅎ𝑥𝜓 |
cbvrexfw.5 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrexfw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvrexfw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | cbvrexfw.2 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
3 | cbvrexfw.3 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
4 | 3 | nfn 1859 | . . . 4 ⊢ Ⅎ𝑦 ¬ 𝜑 |
5 | cbvrexfw.4 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
6 | 5 | nfn 1859 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜓 |
7 | cbvrexfw.5 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
8 | 7 | notbid 317 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
9 | 1, 2, 4, 6, 8 | cbvralfw 3283 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝜓) |
10 | ralnex 3072 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | |
11 | ralnex 3072 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑦 ∈ 𝐴 𝜓) | |
12 | 9, 10, 11 | 3bitr3i 300 | . 2 ⊢ (¬ ∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐴 𝜓) |
13 | 12 | con4bii 320 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 Ⅎwnf 1784 Ⅎwnfc 2884 ∀wral 3061 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-11 2153 ax-12 2170 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1781 df-nf 1785 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 |
This theorem is referenced by: cbvrexw 3286 reusv2lem4 5344 reusv2 5346 nnwof 12755 cbviunf 31182 ac6sf2 31247 dfimafnf 31258 aciunf1lem 31286 bnj1400 33114 phpreu 35874 poimirlem26 35916 indexa 36004 evth2f 42888 fvelrnbf 42891 evthf 42900 eliin2f 42983 stoweidlem34 43920 ovnlerp 44446 |
Copyright terms: Public domain | W3C validator |