MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrexfw Structured version   Visualization version   GIF version

Theorem cbvrexfw 3284
Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexf 3330 with a disjoint variable condition, which does not require ax-13 2370. For a version not dependent on ax-11 2153 and ax-12, see cbvrexvw 3222. (Contributed by FL, 27-Apr-2008.) Avoid ax-10 2136, ax-13 2370. (Revised by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
cbvrexfw.1 𝑥𝐴
cbvrexfw.2 𝑦𝐴
cbvrexfw.3 𝑦𝜑
cbvrexfw.4 𝑥𝜓
cbvrexfw.5 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrexfw (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem cbvrexfw
StepHypRef Expression
1 cbvrexfw.1 . . . 4 𝑥𝐴
2 cbvrexfw.2 . . . 4 𝑦𝐴
3 cbvrexfw.3 . . . . 5 𝑦𝜑
43nfn 1859 . . . 4 𝑦 ¬ 𝜑
5 cbvrexfw.4 . . . . 5 𝑥𝜓
65nfn 1859 . . . 4 𝑥 ¬ 𝜓
7 cbvrexfw.5 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
87notbid 317 . . . 4 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
91, 2, 4, 6, 8cbvralfw 3283 . . 3 (∀𝑥𝐴 ¬ 𝜑 ↔ ∀𝑦𝐴 ¬ 𝜓)
10 ralnex 3072 . . 3 (∀𝑥𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥𝐴 𝜑)
11 ralnex 3072 . . 3 (∀𝑦𝐴 ¬ 𝜓 ↔ ¬ ∃𝑦𝐴 𝜓)
129, 10, 113bitr3i 300 . 2 (¬ ∃𝑥𝐴 𝜑 ↔ ¬ ∃𝑦𝐴 𝜓)
1312con4bii 320 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wnf 1784  wnfc 2884  wral 3061  wrex 3070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-11 2153  ax-12 2170
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1781  df-nf 1785  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071
This theorem is referenced by:  cbvrexw  3286  reusv2lem4  5344  reusv2  5346  nnwof  12755  cbviunf  31182  ac6sf2  31247  dfimafnf  31258  aciunf1lem  31286  bnj1400  33114  phpreu  35874  poimirlem26  35916  indexa  36004  evth2f  42888  fvelrnbf  42891  evthf  42900  eliin2f  42983  stoweidlem34  43920  ovnlerp  44446
  Copyright terms: Public domain W3C validator