| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvrexfw | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexf 3332 with a disjoint variable condition, which does not require ax-13 2370. For a version not dependent on ax-11 2158 and ax-12, see cbvrexvw 3214. (Contributed by FL, 27-Apr-2008.) Avoid ax-10 2142, ax-13 2370. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvrexfw.1 | ⊢ Ⅎ𝑥𝐴 |
| cbvrexfw.2 | ⊢ Ⅎ𝑦𝐴 |
| cbvrexfw.3 | ⊢ Ⅎ𝑦𝜑 |
| cbvrexfw.4 | ⊢ Ⅎ𝑥𝜓 |
| cbvrexfw.5 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvrexfw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvrexfw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | cbvrexfw.2 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
| 3 | cbvrexfw.3 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 4 | 3 | nfn 1857 | . . . 4 ⊢ Ⅎ𝑦 ¬ 𝜑 |
| 5 | cbvrexfw.4 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 6 | 5 | nfn 1857 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜓 |
| 7 | cbvrexfw.5 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 8 | 7 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 9 | 1, 2, 4, 6, 8 | cbvralfw 3276 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝜓) |
| 10 | ralnex 3055 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | |
| 11 | ralnex 3055 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑦 ∈ 𝐴 𝜓) | |
| 12 | 9, 10, 11 | 3bitr3i 301 | . 2 ⊢ (¬ ∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐴 𝜓) |
| 13 | 12 | con4bii 321 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 Ⅎwnf 1783 Ⅎwnfc 2876 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: cbvrexw 3279 reusv2lem4 5351 reusv2 5353 nnwof 12849 cbviunf 32457 ac6sf2 32521 dfimafnf 32533 aciunf1lem 32559 bnj1400 34798 phpreu 37571 poimirlem26 37613 indexa 37700 evth2f 44982 fvelrnbf 44985 evthf 44994 eliin2f 45071 stoweidlem34 46005 ovnlerp 46533 |
| Copyright terms: Public domain | W3C validator |