MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrexfw Structured version   Visualization version   GIF version

Theorem cbvrexfw 3281
Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexf 3337 with a disjoint variable condition, which does not require ax-13 2371. For a version not dependent on ax-11 2158 and ax-12, see cbvrexvw 3217. (Contributed by FL, 27-Apr-2008.) Avoid ax-10 2142, ax-13 2371. (Revised by GG, 10-Jan-2024.)
Hypotheses
Ref Expression
cbvrexfw.1 𝑥𝐴
cbvrexfw.2 𝑦𝐴
cbvrexfw.3 𝑦𝜑
cbvrexfw.4 𝑥𝜓
cbvrexfw.5 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrexfw (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem cbvrexfw
StepHypRef Expression
1 cbvrexfw.1 . . . 4 𝑥𝐴
2 cbvrexfw.2 . . . 4 𝑦𝐴
3 cbvrexfw.3 . . . . 5 𝑦𝜑
43nfn 1857 . . . 4 𝑦 ¬ 𝜑
5 cbvrexfw.4 . . . . 5 𝑥𝜓
65nfn 1857 . . . 4 𝑥 ¬ 𝜓
7 cbvrexfw.5 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
87notbid 318 . . . 4 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
91, 2, 4, 6, 8cbvralfw 3280 . . 3 (∀𝑥𝐴 ¬ 𝜑 ↔ ∀𝑦𝐴 ¬ 𝜓)
10 ralnex 3056 . . 3 (∀𝑥𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥𝐴 𝜑)
11 ralnex 3056 . . 3 (∀𝑦𝐴 ¬ 𝜓 ↔ ¬ ∃𝑦𝐴 𝜓)
129, 10, 113bitr3i 301 . 2 (¬ ∃𝑥𝐴 𝜑 ↔ ¬ ∃𝑦𝐴 𝜓)
1312con4bii 321 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wnf 1783  wnfc 2877  wral 3045  wrex 3054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055
This theorem is referenced by:  cbvrexw  3283  reusv2lem4  5359  reusv2  5361  nnwof  12880  cbviunf  32491  ac6sf2  32555  dfimafnf  32567  aciunf1lem  32593  bnj1400  34832  phpreu  37605  poimirlem26  37647  indexa  37734  evth2f  45016  fvelrnbf  45019  evthf  45028  eliin2f  45105  stoweidlem34  46039  ovnlerp  46567
  Copyright terms: Public domain W3C validator