![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvrexfw | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexf 3357 with a disjoint variable condition, which does not require ax-13 2371. For a version not dependent on ax-11 2154 and ax-12, see cbvrexvw 3235. (Contributed by FL, 27-Apr-2008.) Avoid ax-10 2137, ax-13 2371. (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvrexfw.1 | ⊢ Ⅎ𝑥𝐴 |
cbvrexfw.2 | ⊢ Ⅎ𝑦𝐴 |
cbvrexfw.3 | ⊢ Ⅎ𝑦𝜑 |
cbvrexfw.4 | ⊢ Ⅎ𝑥𝜓 |
cbvrexfw.5 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrexfw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvrexfw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | cbvrexfw.2 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
3 | cbvrexfw.3 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
4 | 3 | nfn 1860 | . . . 4 ⊢ Ⅎ𝑦 ¬ 𝜑 |
5 | cbvrexfw.4 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
6 | 5 | nfn 1860 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜓 |
7 | cbvrexfw.5 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
8 | 7 | notbid 317 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
9 | 1, 2, 4, 6, 8 | cbvralfw 3301 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝜓) |
10 | ralnex 3072 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | |
11 | ralnex 3072 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑦 ∈ 𝐴 𝜓) | |
12 | 9, 10, 11 | 3bitr3i 300 | . 2 ⊢ (¬ ∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐴 𝜓) |
13 | 12 | con4bii 320 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 Ⅎwnf 1785 Ⅎwnfc 2883 ∀wral 3061 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-ex 1782 df-nf 1786 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 |
This theorem is referenced by: cbvrexw 3304 reusv2lem4 5399 reusv2 5401 nnwof 12897 cbviunf 31782 ac6sf2 31844 dfimafnf 31855 aciunf1lem 31882 bnj1400 33841 phpreu 36467 poimirlem26 36509 indexa 36596 evth2f 43689 fvelrnbf 43692 evthf 43701 eliin2f 43783 stoweidlem34 44740 ovnlerp 45268 |
Copyright terms: Public domain | W3C validator |