| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvcsb | Structured version Visualization version GIF version | ||
| Description: Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on 𝐴. Usage of this theorem is discouraged because it depends on ax-13 2377. Use the weaker cbvcsbw 3889 when possible. (Contributed by Jeff Hankins, 13-Sep-2009.) (Revised by Mario Carneiro, 11-Dec-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cbvcsb.1 | ⊢ Ⅎ𝑦𝐶 |
| cbvcsb.2 | ⊢ Ⅎ𝑥𝐷 |
| cbvcsb.3 | ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| cbvcsb | ⊢ ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑦⦌𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvcsb.1 | . . . . 5 ⊢ Ⅎ𝑦𝐶 | |
| 2 | 1 | nfcri 2891 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐶 |
| 3 | cbvcsb.2 | . . . . 5 ⊢ Ⅎ𝑥𝐷 | |
| 4 | 3 | nfcri 2891 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐷 |
| 5 | cbvcsb.3 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) | |
| 6 | 5 | eleq2d 2821 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐶 ↔ 𝑧 ∈ 𝐷)) |
| 7 | 2, 4, 6 | cbvsbc 3805 | . . 3 ⊢ ([𝐴 / 𝑥]𝑧 ∈ 𝐶 ↔ [𝐴 / 𝑦]𝑧 ∈ 𝐷) |
| 8 | 7 | abbii 2803 | . 2 ⊢ {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐶} = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐷} |
| 9 | df-csb 3880 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐶} | |
| 10 | df-csb 3880 | . 2 ⊢ ⦋𝐴 / 𝑦⦌𝐷 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐷} | |
| 11 | 8, 9, 10 | 3eqtr4i 2769 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑦⦌𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2714 Ⅎwnfc 2884 [wsbc 3770 ⦋csb 3879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2377 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-sbc 3771 df-csb 3880 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |