![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvcsb | Structured version Visualization version GIF version |
Description: Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on 𝐴. Usage of this theorem is discouraged because it depends on ax-13 2375. Use the weaker cbvcsbw 3918 when possible. (Contributed by Jeff Hankins, 13-Sep-2009.) (Revised by Mario Carneiro, 11-Dec-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbvcsb.1 | ⊢ Ⅎ𝑦𝐶 |
cbvcsb.2 | ⊢ Ⅎ𝑥𝐷 |
cbvcsb.3 | ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
cbvcsb | ⊢ ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑦⦌𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvcsb.1 | . . . . 5 ⊢ Ⅎ𝑦𝐶 | |
2 | 1 | nfcri 2895 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐶 |
3 | cbvcsb.2 | . . . . 5 ⊢ Ⅎ𝑥𝐷 | |
4 | 3 | nfcri 2895 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐷 |
5 | cbvcsb.3 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) | |
6 | 5 | eleq2d 2825 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐶 ↔ 𝑧 ∈ 𝐷)) |
7 | 2, 4, 6 | cbvsbc 3827 | . . 3 ⊢ ([𝐴 / 𝑥]𝑧 ∈ 𝐶 ↔ [𝐴 / 𝑦]𝑧 ∈ 𝐷) |
8 | 7 | abbii 2807 | . 2 ⊢ {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐶} = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐷} |
9 | df-csb 3909 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐶} | |
10 | df-csb 3909 | . 2 ⊢ ⦋𝐴 / 𝑦⦌𝐷 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐷} | |
11 | 8, 9, 10 | 3eqtr4i 2773 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑦⦌𝐷 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 {cab 2712 Ⅎwnfc 2888 [wsbc 3791 ⦋csb 3908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-13 2375 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-sbc 3792 df-csb 3909 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |