MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvcsb Structured version   Visualization version   GIF version

Theorem cbvcsb 3821
Description: Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on 𝐴. (Contributed by Jeff Hankins, 13-Sep-2009.) (Revised by Mario Carneiro, 11-Dec-2016.)
Hypotheses
Ref Expression
cbvcsb.1 𝑦𝐶
cbvcsb.2 𝑥𝐷
cbvcsb.3 (𝑥 = 𝑦𝐶 = 𝐷)
Assertion
Ref Expression
cbvcsb 𝐴 / 𝑥𝐶 = 𝐴 / 𝑦𝐷

Proof of Theorem cbvcsb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbvcsb.1 . . . . 5 𝑦𝐶
21nfcri 2943 . . . 4 𝑦 𝑧𝐶
3 cbvcsb.2 . . . . 5 𝑥𝐷
43nfcri 2943 . . . 4 𝑥 𝑧𝐷
5 cbvcsb.3 . . . . 5 (𝑥 = 𝑦𝐶 = 𝐷)
65eleq2d 2868 . . . 4 (𝑥 = 𝑦 → (𝑧𝐶𝑧𝐷))
72, 4, 6cbvsbc 3735 . . 3 ([𝐴 / 𝑥]𝑧𝐶[𝐴 / 𝑦]𝑧𝐷)
87abbii 2861 . 2 {𝑧[𝐴 / 𝑥]𝑧𝐶} = {𝑧[𝐴 / 𝑦]𝑧𝐷}
9 df-csb 3812 . 2 𝐴 / 𝑥𝐶 = {𝑧[𝐴 / 𝑥]𝑧𝐶}
10 df-csb 3812 . 2 𝐴 / 𝑦𝐷 = {𝑧[𝐴 / 𝑦]𝑧𝐷}
118, 9, 103eqtr4i 2829 1 𝐴 / 𝑥𝐶 = 𝐴 / 𝑦𝐷
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1522  wcel 2081  {cab 2775  wnfc 2933  [wsbc 3706  csb 3811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-sbc 3707  df-csb 3812
This theorem is referenced by:  cbvcsbv  3822  cbvsum  14885  cbvprod  15102  measiuns  31093  poimirlem26  34468  climinf2mpt  41556  climinfmpt  41557
  Copyright terms: Public domain W3C validator