Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvcsbw | Structured version Visualization version GIF version |
Description: Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on 𝐴. Version of cbvcsb 3843 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Jeff Hankins, 13-Sep-2009.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvcsbw.1 | ⊢ Ⅎ𝑦𝐶 |
cbvcsbw.2 | ⊢ Ⅎ𝑥𝐷 |
cbvcsbw.3 | ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
cbvcsbw | ⊢ ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑦⦌𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvcsbw.1 | . . . . 5 ⊢ Ⅎ𝑦𝐶 | |
2 | 1 | nfcri 2894 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐶 |
3 | cbvcsbw.2 | . . . . 5 ⊢ Ⅎ𝑥𝐷 | |
4 | 3 | nfcri 2894 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐷 |
5 | cbvcsbw.3 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) | |
6 | 5 | eleq2d 2824 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐶 ↔ 𝑧 ∈ 𝐷)) |
7 | 2, 4, 6 | cbvsbcw 3750 | . . 3 ⊢ ([𝐴 / 𝑥]𝑧 ∈ 𝐶 ↔ [𝐴 / 𝑦]𝑧 ∈ 𝐷) |
8 | 7 | abbii 2808 | . 2 ⊢ {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐶} = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐷} |
9 | df-csb 3833 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐶} | |
10 | df-csb 3833 | . 2 ⊢ ⦋𝐴 / 𝑦⦌𝐷 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐷} | |
11 | 8, 9, 10 | 3eqtr4i 2776 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑦⦌𝐷 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {cab 2715 Ⅎwnfc 2887 [wsbc 3716 ⦋csb 3832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-sbc 3717 df-csb 3833 |
This theorem is referenced by: cbvcsbv 3844 cbvsum 15407 cbvprod 15625 measiuns 32185 poimirlem26 35803 climinf2mpt 43255 climinfmpt 43256 |
Copyright terms: Public domain | W3C validator |