Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvcsbw | Structured version Visualization version GIF version |
Description: Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on 𝐴. Version of cbvcsb 3816 with a disjoint variable condition, which does not require ax-13 2379. (Contributed by Jeff Hankins, 13-Sep-2009.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvcsbw.1 | ⊢ Ⅎ𝑦𝐶 |
cbvcsbw.2 | ⊢ Ⅎ𝑥𝐷 |
cbvcsbw.3 | ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
cbvcsbw | ⊢ ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑦⦌𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvcsbw.1 | . . . . 5 ⊢ Ⅎ𝑦𝐶 | |
2 | 1 | nfcri 2906 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐶 |
3 | cbvcsbw.2 | . . . . 5 ⊢ Ⅎ𝑥𝐷 | |
4 | 3 | nfcri 2906 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐷 |
5 | cbvcsbw.3 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) | |
6 | 5 | eleq2d 2837 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐶 ↔ 𝑧 ∈ 𝐷)) |
7 | 2, 4, 6 | cbvsbcw 3729 | . . 3 ⊢ ([𝐴 / 𝑥]𝑧 ∈ 𝐶 ↔ [𝐴 / 𝑦]𝑧 ∈ 𝐷) |
8 | 7 | abbii 2823 | . 2 ⊢ {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐶} = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐷} |
9 | df-csb 3806 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐶} | |
10 | df-csb 3806 | . 2 ⊢ ⦋𝐴 / 𝑦⦌𝐷 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐷} | |
11 | 8, 9, 10 | 3eqtr4i 2791 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑦⦌𝐷 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 {cab 2735 Ⅎwnfc 2899 [wsbc 3696 ⦋csb 3805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-sbc 3697 df-csb 3806 |
This theorem is referenced by: cbvcsbv 3817 cbvsum 15100 cbvprod 15317 measiuns 31704 poimirlem26 35363 climinf2mpt 42722 climinfmpt 42723 |
Copyright terms: Public domain | W3C validator |