| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqvisset | Structured version Visualization version GIF version | ||
| Description: A class equal to a variable is a set. Note the absence of disjoint variable condition, contrary to isset 3473 and issetri 3478. (Contributed by BJ, 27-Apr-2019.) |
| Ref | Expression |
|---|---|
| eqvisset | ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3463 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | eleq1 2822 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ V ↔ 𝐴 ∈ V)) | |
| 3 | 1, 2 | mpbii 233 | 1 ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 |
| This theorem is referenced by: ceqex 3631 moeq3 3695 mo2icl 3697 eusvnfb 5363 oprabv 7467 elxp5 7919 xpsnen 9069 fival 9424 dffi2 9435 tz9.12lem1 9801 m1detdiag 22535 dvfsumlem1 25984 dchrisumlema 27451 dchrisumlem2 27453 fnimage 35947 bj-csbsnlem 36921 copsex2b 37158 pr2cv 43572 disjf1o 45215 mptssid 45265 fourierdlem49 46184 |
| Copyright terms: Public domain | W3C validator |