![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqvisset | Structured version Visualization version GIF version |
Description: A class equal to a variable is a set. Note the absence of disjoint variable condition, contrary to isset 3487 and issetri 3490. (Contributed by BJ, 27-Apr-2019.) |
Ref | Expression |
---|---|
eqvisset | ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3478 | . 2 ⊢ 𝑥 ∈ V | |
2 | eleq1 2821 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ V ↔ 𝐴 ∈ V)) | |
3 | 1, 2 | mpbii 232 | 1 ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 |
This theorem is referenced by: ceqex 3640 moeq3 3708 mo2icl 3710 eusvnfb 5391 oprabv 7471 elxp5 7916 xpsnen 9057 fival 9409 dffi2 9420 tz9.12lem1 9784 m1detdiag 22106 dvfsumlem1 25550 dchrisumlema 26998 dchrisumlem2 27000 fnimage 34970 bj-csbsnlem 35869 copsex2b 36107 pr2cv 42381 disjf1o 43969 mptssid 44023 fourierdlem49 44950 |
Copyright terms: Public domain | W3C validator |