MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqvisset Structured version   Visualization version   GIF version

Theorem eqvisset 3467
Description: A class equal to a variable is a set. Note the absence of disjoint variable condition, contrary to isset 3461 and issetri 3466. (Contributed by BJ, 27-Apr-2019.)
Assertion
Ref Expression
eqvisset (𝑥 = 𝐴𝐴 ∈ V)

Proof of Theorem eqvisset
StepHypRef Expression
1 vex 3451 . 2 𝑥 ∈ V
2 eleq1 2816 . 2 (𝑥 = 𝐴 → (𝑥 ∈ V ↔ 𝐴 ∈ V))
31, 2mpbii 233 1 (𝑥 = 𝐴𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449
This theorem is referenced by:  ceqex  3618  moeq3  3683  mo2icl  3685  eusvnfb  5348  oprabv  7449  elxp5  7899  xpsnen  9025  fival  9363  dffi2  9374  tz9.12lem1  9740  m1detdiag  22484  dvfsumlem1  25932  dchrisumlema  27399  dchrisumlem2  27401  fnimage  35917  bj-csbsnlem  36891  copsex2b  37128  pr2cv  43537  disjf1o  45185  mptssid  45235  fourierdlem49  46153
  Copyright terms: Public domain W3C validator