Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqvisset | Structured version Visualization version GIF version |
Description: A class equal to a variable is a set. Note the absence of disjoint variable condition, contrary to isset 3435 and issetri 3438. (Contributed by BJ, 27-Apr-2019.) |
Ref | Expression |
---|---|
eqvisset | ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3426 | . 2 ⊢ 𝑥 ∈ V | |
2 | eleq1 2826 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ V ↔ 𝐴 ∈ V)) | |
3 | 1, 2 | mpbii 232 | 1 ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 |
This theorem is referenced by: ceqex 3574 moeq3 3642 mo2icl 3644 eusvnfb 5311 oprabv 7313 elxp5 7744 xpsnen 8796 fival 9101 dffi2 9112 tz9.12lem1 9476 m1detdiag 21654 dvfsumlem1 25095 dchrisumlema 26541 dchrisumlem2 26543 fnimage 34158 bj-csbsnlem 35015 copsex2b 35238 pr2cv 41044 disjf1o 42618 mptssid 42674 fourierdlem49 43586 |
Copyright terms: Public domain | W3C validator |