| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqvisset | Structured version Visualization version GIF version | ||
| Description: A class equal to a variable is a set. Note the absence of disjoint variable condition, contrary to isset 3464 and issetri 3469. (Contributed by BJ, 27-Apr-2019.) |
| Ref | Expression |
|---|---|
| eqvisset | ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3454 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | eleq1 2817 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ V ↔ 𝐴 ∈ V)) | |
| 3 | 1, 2 | mpbii 233 | 1 ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 |
| This theorem is referenced by: ceqex 3621 moeq3 3686 mo2icl 3688 eusvnfb 5351 oprabv 7452 elxp5 7902 xpsnen 9029 fival 9370 dffi2 9381 tz9.12lem1 9747 m1detdiag 22491 dvfsumlem1 25939 dchrisumlema 27406 dchrisumlem2 27408 fnimage 35924 bj-csbsnlem 36898 copsex2b 37135 pr2cv 43544 disjf1o 45192 mptssid 45242 fourierdlem49 46160 |
| Copyright terms: Public domain | W3C validator |