| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqvisset | Structured version Visualization version GIF version | ||
| Description: A class equal to a variable is a set. Note the absence of disjoint variable condition, contrary to isset 3450 and issetri 3455. (Contributed by BJ, 27-Apr-2019.) |
| Ref | Expression |
|---|---|
| eqvisset | ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | eleq1 2819 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ V ↔ 𝐴 ∈ V)) | |
| 3 | 1, 2 | mpbii 233 | 1 ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 |
| This theorem is referenced by: ceqex 3602 moeq3 3666 mo2icl 3668 eusvnfb 5326 oprabv 7401 elxp5 7848 xpsnen 8969 fival 9291 dffi2 9302 tz9.12lem1 9675 m1detdiag 22507 dvfsumlem1 25954 dchrisumlema 27421 dchrisumlem2 27423 fnimage 35963 bj-csbsnlem 36937 copsex2b 37174 pr2cv 43581 disjf1o 45228 mptssid 45278 fourierdlem49 46193 |
| Copyright terms: Public domain | W3C validator |