Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ref5 Structured version   Visualization version   GIF version

Theorem ref5 38301
Description: Two ways to say that an intersection of the identity relation with a Cartesian product is a subclass. (Contributed by Peter Mazsa, 12-Dec-2023.)
Assertion
Ref Expression
ref5 (( I ∩ (𝐴 × 𝐵)) ⊆ 𝑅 ↔ ∀𝑥 ∈ (𝐴𝐵)𝑥𝑅𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅

Proof of Theorem ref5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 equcom 2018 . . . . . 6 (𝑦 = 𝑥𝑥 = 𝑦)
21imbi1i 349 . . . . 5 ((𝑦 = 𝑥𝑥𝑅𝑦) ↔ (𝑥 = 𝑦𝑥𝑅𝑦))
32ralbii 3075 . . . 4 (∀𝑦𝐵 (𝑦 = 𝑥𝑥𝑅𝑦) ↔ ∀𝑦𝐵 (𝑥 = 𝑦𝑥𝑅𝑦))
4 breq2 5111 . . . . 5 (𝑦 = 𝑥 → (𝑥𝑅𝑦𝑥𝑅𝑥))
54ceqsralbv 3623 . . . 4 (∀𝑦𝐵 (𝑦 = 𝑥𝑥𝑅𝑦) ↔ (𝑥𝐵𝑥𝑅𝑥))
63, 5bitr3i 277 . . 3 (∀𝑦𝐵 (𝑥 = 𝑦𝑥𝑅𝑦) ↔ (𝑥𝐵𝑥𝑅𝑥))
76ralbii 3075 . 2 (∀𝑥𝐴𝑦𝐵 (𝑥 = 𝑦𝑥𝑅𝑦) ↔ ∀𝑥𝐴 (𝑥𝐵𝑥𝑅𝑥))
8 idinxpss 38300 . 2 (( I ∩ (𝐴 × 𝐵)) ⊆ 𝑅 ↔ ∀𝑥𝐴𝑦𝐵 (𝑥 = 𝑦𝑥𝑅𝑦))
9 ralin 4212 . 2 (∀𝑥 ∈ (𝐴𝐵)𝑥𝑅𝑥 ↔ ∀𝑥𝐴 (𝑥𝐵𝑥𝑅𝑥))
107, 8, 93bitr4i 303 1 (( I ∩ (𝐴 × 𝐵)) ⊆ 𝑅 ↔ ∀𝑥 ∈ (𝐴𝐵)𝑥𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3044  cin 3913  wss 3914   class class class wbr 5107   I cid 5532   × cxp 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645
This theorem is referenced by:  dfrefrel5  38508
  Copyright terms: Public domain W3C validator