Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ref5 Structured version   Visualization version   GIF version

Theorem ref5 37170
Description: Two ways to say that an intersection of the identity relation with a Cartesian product is a subclass. (Contributed by Peter Mazsa, 12-Dec-2023.)
Assertion
Ref Expression
ref5 (( I ∩ (𝐴 × 𝐵)) ⊆ 𝑅 ↔ ∀𝑥 ∈ (𝐴𝐵)𝑥𝑅𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅

Proof of Theorem ref5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 equcom 2021 . . . . . 6 (𝑦 = 𝑥𝑥 = 𝑦)
21imbi1i 349 . . . . 5 ((𝑦 = 𝑥𝑥𝑅𝑦) ↔ (𝑥 = 𝑦𝑥𝑅𝑦))
32ralbii 3093 . . . 4 (∀𝑦𝐵 (𝑦 = 𝑥𝑥𝑅𝑦) ↔ ∀𝑦𝐵 (𝑥 = 𝑦𝑥𝑅𝑦))
4 breq2 5151 . . . . 5 (𝑦 = 𝑥 → (𝑥𝑅𝑦𝑥𝑅𝑥))
54ceqsralbv 3644 . . . 4 (∀𝑦𝐵 (𝑦 = 𝑥𝑥𝑅𝑦) ↔ (𝑥𝐵𝑥𝑅𝑥))
63, 5bitr3i 276 . . 3 (∀𝑦𝐵 (𝑥 = 𝑦𝑥𝑅𝑦) ↔ (𝑥𝐵𝑥𝑅𝑥))
76ralbii 3093 . 2 (∀𝑥𝐴𝑦𝐵 (𝑥 = 𝑦𝑥𝑅𝑦) ↔ ∀𝑥𝐴 (𝑥𝐵𝑥𝑅𝑥))
8 idinxpss 37169 . 2 (( I ∩ (𝐴 × 𝐵)) ⊆ 𝑅 ↔ ∀𝑥𝐴𝑦𝐵 (𝑥 = 𝑦𝑥𝑅𝑦))
9 ralin 37103 . 2 (∀𝑥 ∈ (𝐴𝐵)𝑥𝑅𝑥 ↔ ∀𝑥𝐴 (𝑥𝐵𝑥𝑅𝑥))
107, 8, 93bitr4i 302 1 (( I ∩ (𝐴 × 𝐵)) ⊆ 𝑅 ↔ ∀𝑥 ∈ (𝐴𝐵)𝑥𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106  wral 3061  cin 3946  wss 3947   class class class wbr 5147   I cid 5572   × cxp 5673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682
This theorem is referenced by:  dfrefrel5  37375
  Copyright terms: Public domain W3C validator