| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ref5 | Structured version Visualization version GIF version | ||
| Description: Two ways to say that an intersection of the identity relation with a Cartesian product is a subclass. (Contributed by Peter Mazsa, 12-Dec-2023.) |
| Ref | Expression |
|---|---|
| ref5 | ⊢ (( I ∩ (𝐴 × 𝐵)) ⊆ 𝑅 ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐵)𝑥𝑅𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcom 2017 | . . . . . 6 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
| 2 | 1 | imbi1i 349 | . . . . 5 ⊢ ((𝑦 = 𝑥 → 𝑥𝑅𝑦) ↔ (𝑥 = 𝑦 → 𝑥𝑅𝑦)) |
| 3 | 2 | ralbii 3093 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 (𝑦 = 𝑥 → 𝑥𝑅𝑦) ↔ ∀𝑦 ∈ 𝐵 (𝑥 = 𝑦 → 𝑥𝑅𝑦)) |
| 4 | breq2 5147 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑥𝑅𝑦 ↔ 𝑥𝑅𝑥)) | |
| 5 | 4 | ceqsralbv 3657 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 (𝑦 = 𝑥 → 𝑥𝑅𝑦) ↔ (𝑥 ∈ 𝐵 → 𝑥𝑅𝑥)) |
| 6 | 3, 5 | bitr3i 277 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 (𝑥 = 𝑦 → 𝑥𝑅𝑦) ↔ (𝑥 ∈ 𝐵 → 𝑥𝑅𝑥)) |
| 7 | 6 | ralbii 3093 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 = 𝑦 → 𝑥𝑅𝑦) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝑥𝑅𝑥)) |
| 8 | idinxpss 38313 | . 2 ⊢ (( I ∩ (𝐴 × 𝐵)) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 = 𝑦 → 𝑥𝑅𝑦)) | |
| 9 | ralin 4249 | . 2 ⊢ (∀𝑥 ∈ (𝐴 ∩ 𝐵)𝑥𝑅𝑥 ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝑥𝑅𝑥)) | |
| 10 | 7, 8, 9 | 3bitr4i 303 | 1 ⊢ (( I ∩ (𝐴 × 𝐵)) ⊆ 𝑅 ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐵)𝑥𝑅𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∩ cin 3950 ⊆ wss 3951 class class class wbr 5143 I cid 5577 × cxp 5683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 |
| This theorem is referenced by: dfrefrel5 38518 |
| Copyright terms: Public domain | W3C validator |