MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intprg Structured version   Visualization version   GIF version

Theorem intprg 4942
Description: The intersection of a pair is the intersection of its members. Closed form of intpr 4943. Theorem 71 of [Suppes] p. 42. (Contributed by FL, 27-Apr-2008.) (Proof shortened by BJ, 1-Sep-2024.)
Assertion
Ref Expression
intprg ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} = (𝐴𝐵))

Proof of Theorem intprg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3449 . . . . . 6 𝑥 ∈ V
21elint 4913 . . . . 5 (𝑥 {𝐴, 𝐵} ↔ ∀𝑦(𝑦 ∈ {𝐴, 𝐵} → 𝑥𝑦))
3 vex 3449 . . . . . . . . 9 𝑦 ∈ V
43elpr 4609 . . . . . . . 8 (𝑦 ∈ {𝐴, 𝐵} ↔ (𝑦 = 𝐴𝑦 = 𝐵))
54imbi1i 349 . . . . . . 7 ((𝑦 ∈ {𝐴, 𝐵} → 𝑥𝑦) ↔ ((𝑦 = 𝐴𝑦 = 𝐵) → 𝑥𝑦))
6 jaob 960 . . . . . . 7 (((𝑦 = 𝐴𝑦 = 𝐵) → 𝑥𝑦) ↔ ((𝑦 = 𝐴𝑥𝑦) ∧ (𝑦 = 𝐵𝑥𝑦)))
75, 6bitri 274 . . . . . 6 ((𝑦 ∈ {𝐴, 𝐵} → 𝑥𝑦) ↔ ((𝑦 = 𝐴𝑥𝑦) ∧ (𝑦 = 𝐵𝑥𝑦)))
87albii 1821 . . . . 5 (∀𝑦(𝑦 ∈ {𝐴, 𝐵} → 𝑥𝑦) ↔ ∀𝑦((𝑦 = 𝐴𝑥𝑦) ∧ (𝑦 = 𝐵𝑥𝑦)))
9 19.26 1873 . . . . 5 (∀𝑦((𝑦 = 𝐴𝑥𝑦) ∧ (𝑦 = 𝐵𝑥𝑦)) ↔ (∀𝑦(𝑦 = 𝐴𝑥𝑦) ∧ ∀𝑦(𝑦 = 𝐵𝑥𝑦)))
102, 8, 93bitri 296 . . . 4 (𝑥 {𝐴, 𝐵} ↔ (∀𝑦(𝑦 = 𝐴𝑥𝑦) ∧ ∀𝑦(𝑦 = 𝐵𝑥𝑦)))
11 elin 3926 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
12 clel4g 3614 . . . . . 6 (𝐴𝑉 → (𝑥𝐴 ↔ ∀𝑦(𝑦 = 𝐴𝑥𝑦)))
13 clel4g 3614 . . . . . 6 (𝐵𝑊 → (𝑥𝐵 ↔ ∀𝑦(𝑦 = 𝐵𝑥𝑦)))
1412, 13bi2anan9 637 . . . . 5 ((𝐴𝑉𝐵𝑊) → ((𝑥𝐴𝑥𝐵) ↔ (∀𝑦(𝑦 = 𝐴𝑥𝑦) ∧ ∀𝑦(𝑦 = 𝐵𝑥𝑦))))
1511, 14bitr2id 283 . . . 4 ((𝐴𝑉𝐵𝑊) → ((∀𝑦(𝑦 = 𝐴𝑥𝑦) ∧ ∀𝑦(𝑦 = 𝐵𝑥𝑦)) ↔ 𝑥 ∈ (𝐴𝐵)))
1610, 15bitrid 282 . . 3 ((𝐴𝑉𝐵𝑊) → (𝑥 {𝐴, 𝐵} ↔ 𝑥 ∈ (𝐴𝐵)))
1716alrimiv 1930 . 2 ((𝐴𝑉𝐵𝑊) → ∀𝑥(𝑥 {𝐴, 𝐵} ↔ 𝑥 ∈ (𝐴𝐵)))
18 dfcleq 2729 . 2 ( {𝐴, 𝐵} = (𝐴𝐵) ↔ ∀𝑥(𝑥 {𝐴, 𝐵} ↔ 𝑥 ∈ (𝐴𝐵)))
1917, 18sylibr 233 1 ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  wal 1539   = wceq 1541  wcel 2106  cin 3909  {cpr 4588   cint 4907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3447  df-un 3915  df-in 3917  df-sn 4587  df-pr 4589  df-int 4908
This theorem is referenced by:  intpr  4943  intsng  4946  inelfi  9354  mreincl  17479  subrgin  20245  lssincl  20426  incld  22394  difelsiga  32732  inelpisys  32753  bj-prmoore  35586  inidl  36489  toplatmeet  47018
  Copyright terms: Public domain W3C validator