Step | Hyp | Ref
| Expression |
1 | | vex 3413 |
. . . . . 6
⊢ 𝑥 ∈ V |
2 | 1 | elint 4844 |
. . . . 5
⊢ (𝑥 ∈ ∩ {𝐴,
𝐵} ↔ ∀𝑦(𝑦 ∈ {𝐴, 𝐵} → 𝑥 ∈ 𝑦)) |
3 | | vex 3413 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
4 | 3 | elpr 4545 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝐴, 𝐵} ↔ (𝑦 = 𝐴 ∨ 𝑦 = 𝐵)) |
5 | 4 | imbi1i 353 |
. . . . . . 7
⊢ ((𝑦 ∈ {𝐴, 𝐵} → 𝑥 ∈ 𝑦) ↔ ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) → 𝑥 ∈ 𝑦)) |
6 | | jaob 959 |
. . . . . . 7
⊢ (((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) → 𝑥 ∈ 𝑦) ↔ ((𝑦 = 𝐴 → 𝑥 ∈ 𝑦) ∧ (𝑦 = 𝐵 → 𝑥 ∈ 𝑦))) |
7 | 5, 6 | bitri 278 |
. . . . . 6
⊢ ((𝑦 ∈ {𝐴, 𝐵} → 𝑥 ∈ 𝑦) ↔ ((𝑦 = 𝐴 → 𝑥 ∈ 𝑦) ∧ (𝑦 = 𝐵 → 𝑥 ∈ 𝑦))) |
8 | 7 | albii 1821 |
. . . . 5
⊢
(∀𝑦(𝑦 ∈ {𝐴, 𝐵} → 𝑥 ∈ 𝑦) ↔ ∀𝑦((𝑦 = 𝐴 → 𝑥 ∈ 𝑦) ∧ (𝑦 = 𝐵 → 𝑥 ∈ 𝑦))) |
9 | | 19.26 1871 |
. . . . 5
⊢
(∀𝑦((𝑦 = 𝐴 → 𝑥 ∈ 𝑦) ∧ (𝑦 = 𝐵 → 𝑥 ∈ 𝑦)) ↔ (∀𝑦(𝑦 = 𝐴 → 𝑥 ∈ 𝑦) ∧ ∀𝑦(𝑦 = 𝐵 → 𝑥 ∈ 𝑦))) |
10 | 2, 8, 9 | 3bitri 300 |
. . . 4
⊢ (𝑥 ∈ ∩ {𝐴,
𝐵} ↔ (∀𝑦(𝑦 = 𝐴 → 𝑥 ∈ 𝑦) ∧ ∀𝑦(𝑦 = 𝐵 → 𝑥 ∈ 𝑦))) |
11 | | elin 3874 |
. . . . 5
⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
12 | | clel4g 3575 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↔ ∀𝑦(𝑦 = 𝐴 → 𝑥 ∈ 𝑦))) |
13 | | clel4g 3575 |
. . . . . 6
⊢ (𝐵 ∈ 𝑊 → (𝑥 ∈ 𝐵 ↔ ∀𝑦(𝑦 = 𝐵 → 𝑥 ∈ 𝑦))) |
14 | 12, 13 | bi2anan9 638 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (∀𝑦(𝑦 = 𝐴 → 𝑥 ∈ 𝑦) ∧ ∀𝑦(𝑦 = 𝐵 → 𝑥 ∈ 𝑦)))) |
15 | 11, 14 | syl5rbb 287 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((∀𝑦(𝑦 = 𝐴 → 𝑥 ∈ 𝑦) ∧ ∀𝑦(𝑦 = 𝐵 → 𝑥 ∈ 𝑦)) ↔ 𝑥 ∈ (𝐴 ∩ 𝐵))) |
16 | 10, 15 | syl5bb 286 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ ∩ {𝐴, 𝐵} ↔ 𝑥 ∈ (𝐴 ∩ 𝐵))) |
17 | 16 | alrimiv 1928 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∀𝑥(𝑥 ∈ ∩ {𝐴, 𝐵} ↔ 𝑥 ∈ (𝐴 ∩ 𝐵))) |
18 | | dfcleq 2751 |
. 2
⊢ (∩ {𝐴,
𝐵} = (𝐴 ∩ 𝐵) ↔ ∀𝑥(𝑥 ∈ ∩ {𝐴, 𝐵} ↔ 𝑥 ∈ (𝐴 ∩ 𝐵))) |
19 | 17, 18 | sylibr 237 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) |