MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intprg Structured version   Visualization version   GIF version

Theorem intprg 4986
Description: The intersection of a pair is the intersection of its members. Closed form of intpr 4987. Theorem 71 of [Suppes] p. 42. (Contributed by FL, 27-Apr-2008.) (Proof shortened by BJ, 1-Sep-2024.)
Assertion
Ref Expression
intprg ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} = (𝐴𝐵))

Proof of Theorem intprg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3482 . . . . . 6 𝑥 ∈ V
21elint 4957 . . . . 5 (𝑥 {𝐴, 𝐵} ↔ ∀𝑦(𝑦 ∈ {𝐴, 𝐵} → 𝑥𝑦))
3 vex 3482 . . . . . . . . 9 𝑦 ∈ V
43elpr 4655 . . . . . . . 8 (𝑦 ∈ {𝐴, 𝐵} ↔ (𝑦 = 𝐴𝑦 = 𝐵))
54imbi1i 349 . . . . . . 7 ((𝑦 ∈ {𝐴, 𝐵} → 𝑥𝑦) ↔ ((𝑦 = 𝐴𝑦 = 𝐵) → 𝑥𝑦))
6 jaob 963 . . . . . . 7 (((𝑦 = 𝐴𝑦 = 𝐵) → 𝑥𝑦) ↔ ((𝑦 = 𝐴𝑥𝑦) ∧ (𝑦 = 𝐵𝑥𝑦)))
75, 6bitri 275 . . . . . 6 ((𝑦 ∈ {𝐴, 𝐵} → 𝑥𝑦) ↔ ((𝑦 = 𝐴𝑥𝑦) ∧ (𝑦 = 𝐵𝑥𝑦)))
87albii 1816 . . . . 5 (∀𝑦(𝑦 ∈ {𝐴, 𝐵} → 𝑥𝑦) ↔ ∀𝑦((𝑦 = 𝐴𝑥𝑦) ∧ (𝑦 = 𝐵𝑥𝑦)))
9 19.26 1868 . . . . 5 (∀𝑦((𝑦 = 𝐴𝑥𝑦) ∧ (𝑦 = 𝐵𝑥𝑦)) ↔ (∀𝑦(𝑦 = 𝐴𝑥𝑦) ∧ ∀𝑦(𝑦 = 𝐵𝑥𝑦)))
102, 8, 93bitri 297 . . . 4 (𝑥 {𝐴, 𝐵} ↔ (∀𝑦(𝑦 = 𝐴𝑥𝑦) ∧ ∀𝑦(𝑦 = 𝐵𝑥𝑦)))
11 elin 3979 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
12 clel4g 3663 . . . . . 6 (𝐴𝑉 → (𝑥𝐴 ↔ ∀𝑦(𝑦 = 𝐴𝑥𝑦)))
13 clel4g 3663 . . . . . 6 (𝐵𝑊 → (𝑥𝐵 ↔ ∀𝑦(𝑦 = 𝐵𝑥𝑦)))
1412, 13bi2anan9 638 . . . . 5 ((𝐴𝑉𝐵𝑊) → ((𝑥𝐴𝑥𝐵) ↔ (∀𝑦(𝑦 = 𝐴𝑥𝑦) ∧ ∀𝑦(𝑦 = 𝐵𝑥𝑦))))
1511, 14bitr2id 284 . . . 4 ((𝐴𝑉𝐵𝑊) → ((∀𝑦(𝑦 = 𝐴𝑥𝑦) ∧ ∀𝑦(𝑦 = 𝐵𝑥𝑦)) ↔ 𝑥 ∈ (𝐴𝐵)))
1610, 15bitrid 283 . . 3 ((𝐴𝑉𝐵𝑊) → (𝑥 {𝐴, 𝐵} ↔ 𝑥 ∈ (𝐴𝐵)))
1716alrimiv 1925 . 2 ((𝐴𝑉𝐵𝑊) → ∀𝑥(𝑥 {𝐴, 𝐵} ↔ 𝑥 ∈ (𝐴𝐵)))
18 dfcleq 2728 . 2 ( {𝐴, 𝐵} = (𝐴𝐵) ↔ ∀𝑥(𝑥 {𝐴, 𝐵} ↔ 𝑥 ∈ (𝐴𝐵)))
1917, 18sylibr 234 1 ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  wal 1535   = wceq 1537  wcel 2106  cin 3962  {cpr 4633   cint 4951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-un 3968  df-in 3970  df-sn 4632  df-pr 4634  df-int 4952
This theorem is referenced by:  intpr  4987  intsng  4988  inelfi  9456  mreincl  17644  subrngin  20578  subrgin  20613  lssincl  20981  incld  23067  difelsiga  34114  inelpisys  34135  bj-prmoore  37098  inidl  38017  toplatmeet  48792
  Copyright terms: Public domain W3C validator