![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cleq1lem | Structured version Visualization version GIF version |
Description: Equality implies bijection. (Contributed by RP, 9-May-2020.) |
Ref | Expression |
---|---|
cleq1lem | ⊢ (𝐴 = 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝜑) ↔ (𝐵 ⊆ 𝐶 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 4034 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
2 | 1 | anbi1d 630 | 1 ⊢ (𝐴 = 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝜑) ↔ (𝐵 ⊆ 𝐶 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 |
This theorem is referenced by: cleq1 15032 trcleq12lem 15042 lcmfun 16692 coprmproddvds 16710 isslw 19650 neival 23131 nrmsep3 23384 xkococnlem 23688 ovolval 25527 ovnval2b 46473 |
Copyright terms: Public domain | W3C validator |