Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cleq1lem | Structured version Visualization version GIF version |
Description: Equality implies bijection. (Contributed by RP, 9-May-2020.) |
Ref | Expression |
---|---|
cleq1lem | ⊢ (𝐴 = 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝜑) ↔ (𝐵 ⊆ 𝐶 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 3942 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
2 | 1 | anbi1d 629 | 1 ⊢ (𝐴 = 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝜑) ↔ (𝐵 ⊆ 𝐶 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: cleq1 14622 trcleq12lem 14632 lcmfun 16278 coprmproddvds 16296 isslw 19128 neival 22161 nrmsep3 22414 xkococnlem 22718 ovolval 24542 ovnval2b 43980 |
Copyright terms: Public domain | W3C validator |