| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cleq1lem | Structured version Visualization version GIF version | ||
| Description: Equality implies bijection. (Contributed by RP, 9-May-2020.) |
| Ref | Expression |
|---|---|
| cleq1lem | ⊢ (𝐴 = 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝜑) ↔ (𝐵 ⊆ 𝐶 ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 4009 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
| 2 | 1 | anbi1d 631 | 1 ⊢ (𝐴 = 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝜑) ↔ (𝐵 ⊆ 𝐶 ∧ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊆ wss 3951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2729 df-ss 3968 |
| This theorem is referenced by: cleq1 15022 trcleq12lem 15032 lcmfun 16682 coprmproddvds 16700 isslw 19626 neival 23110 nrmsep3 23363 xkococnlem 23667 ovolval 25508 ovnval2b 46567 |
| Copyright terms: Public domain | W3C validator |