![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cleq1lem | Structured version Visualization version GIF version |
Description: Equality implies bijection. (Contributed by RP, 9-May-2020.) |
Ref | Expression |
---|---|
cleq1lem | ⊢ (𝐴 = 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝜑) ↔ (𝐵 ⊆ 𝐶 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 3845 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
2 | 1 | anbi1d 623 | 1 ⊢ (𝐴 = 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝜑) ↔ (𝐵 ⊆ 𝐶 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ⊆ wss 3792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-in 3799 df-ss 3806 |
This theorem is referenced by: cleq1 14131 trcleq12lem 14141 lcmfun 15764 coprmproddvds 15782 isslw 18407 nrmsep3 21567 ovnval2b 41697 |
Copyright terms: Public domain | W3C validator |