MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cleq1lem Structured version   Visualization version   GIF version

Theorem cleq1lem 14955
Description: Equality implies bijection. (Contributed by RP, 9-May-2020.)
Assertion
Ref Expression
cleq1lem (𝐴 = 𝐵 → ((𝐴𝐶𝜑) ↔ (𝐵𝐶𝜑)))

Proof of Theorem cleq1lem
StepHypRef Expression
1 sseq1 3975 . 2 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
21anbi1d 631 1 (𝐴 = 𝐵 → ((𝐴𝐶𝜑) ↔ (𝐵𝐶𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wss 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2722  df-ss 3934
This theorem is referenced by:  cleq1  14956  trcleq12lem  14966  lcmfun  16622  coprmproddvds  16640  isslw  19545  neival  22996  nrmsep3  23249  xkococnlem  23553  ovolval  25381  ovnval2b  46557
  Copyright terms: Public domain W3C validator