Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intss | Structured version Visualization version GIF version |
Description: Intersection of subclasses. (Contributed by NM, 14-Oct-1999.) (Proof shortened by OpenAI, 25-Mar-2020.) |
Ref | Expression |
---|---|
intss | ⊢ (𝐴 ⊆ 𝐵 → ∩ 𝐵 ⊆ ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssralv 3987 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 → ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥)) | |
2 | 1 | ss2abdv 3997 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥} ⊆ {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥}) |
3 | dfint2 4881 | . 2 ⊢ ∩ 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥} | |
4 | dfint2 4881 | . 2 ⊢ ∩ 𝐴 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
5 | 2, 3, 4 | 3sstr4g 3966 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∩ 𝐵 ⊆ ∩ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 {cab 2715 ∀wral 3064 ⊆ wss 3887 ∩ cint 4879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3434 df-in 3894 df-ss 3904 df-int 4880 |
This theorem is referenced by: uniintsn 4918 intabs 5266 fiss 9183 tc2 9500 tcss 9502 tcel 9503 rankval4 9625 cfub 10005 cflm 10006 cflecard 10009 fin23lem26 10081 clsslem 14695 mrcss 17325 lspss 20246 lbsextlem3 20422 aspss 21081 clsss 22205 1stcfb 22596 ufinffr 23080 spanss 29710 ss2mcls 33530 naddssim 33837 cofcut1 34090 pclssN 37908 dochspss 39392 clss2lem 41219 |
Copyright terms: Public domain | W3C validator |