MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intss Structured version   Visualization version   GIF version

Theorem intss 4993
Description: Intersection of subclasses. (Contributed by NM, 14-Oct-1999.) (Proof shortened by OpenAI, 25-Mar-2020.)
Assertion
Ref Expression
intss (𝐴𝐵 𝐵 𝐴)

Proof of Theorem intss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssralv 4077 . . 3 (𝐴𝐵 → (∀𝑥𝐵 𝑦𝑥 → ∀𝑥𝐴 𝑦𝑥))
21ss2abdv 4089 . 2 (𝐴𝐵 → {𝑦 ∣ ∀𝑥𝐵 𝑦𝑥} ⊆ {𝑦 ∣ ∀𝑥𝐴 𝑦𝑥})
3 dfint2 4972 . 2 𝐵 = {𝑦 ∣ ∀𝑥𝐵 𝑦𝑥}
4 dfint2 4972 . 2 𝐴 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝑥}
52, 3, 43sstr4g 4054 1 (𝐴𝐵 𝐵 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  {cab 2717  wral 3067  wss 3976   cint 4970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-ral 3068  df-ss 3993  df-int 4971
This theorem is referenced by:  uniintsn  5009  intabs  5367  cofon1  8728  naddssim  8741  fiss  9493  tc2  9811  tcss  9813  tcel  9814  rankval4  9936  cfub  10318  cflm  10319  cflecard  10322  fin23lem26  10394  clsslem  15033  mrcss  17674  lspss  21005  lbsextlem3  21185  aspss  21920  clsss  23083  1stcfb  23474  ufinffr  23958  cofcut1  27972  spanss  31380  fldgenss  33283  ss2mcls  35536  pclssN  39851  dochspss  41335  clss2lem  43573
  Copyright terms: Public domain W3C validator