![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intss | Structured version Visualization version GIF version |
Description: Intersection of subclasses. (Contributed by NM, 14-Oct-1999.) (Proof shortened by OpenAI, 25-Mar-2020.) |
Ref | Expression |
---|---|
intss | ⊢ (𝐴 ⊆ 𝐵 → ∩ 𝐵 ⊆ ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssralv 4042 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 → ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥)) | |
2 | 1 | ss2abdv 4052 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥} ⊆ {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥}) |
3 | dfint2 4942 | . 2 ⊢ ∩ 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥} | |
4 | dfint2 4942 | . 2 ⊢ ∩ 𝐴 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
5 | 2, 3, 4 | 3sstr4g 4019 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∩ 𝐵 ⊆ ∩ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 {cab 2701 ∀wral 3053 ⊆ wss 3940 ∩ cint 4940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-v 3468 df-in 3947 df-ss 3957 df-int 4941 |
This theorem is referenced by: uniintsn 4981 intabs 5332 cofon1 8667 naddssim 8680 fiss 9415 tc2 9733 tcss 9735 tcel 9736 rankval4 9858 cfub 10240 cflm 10241 cflecard 10244 fin23lem26 10316 clsslem 14928 mrcss 17559 lspss 20821 lbsextlem3 21001 aspss 21739 clsss 22880 1stcfb 23271 ufinffr 23755 cofcut1 27756 spanss 31070 fldgenss 32872 ss2mcls 35048 pclssN 39255 dochspss 40739 clss2lem 42851 |
Copyright terms: Public domain | W3C validator |