| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intss | Structured version Visualization version GIF version | ||
| Description: Intersection of subclasses. (Contributed by NM, 14-Oct-1999.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| Ref | Expression |
|---|---|
| intss | ⊢ (𝐴 ⊆ 𝐵 → ∩ 𝐵 ⊆ ∩ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssralv 4018 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 → ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥)) | |
| 2 | 1 | ss2abdv 4032 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥} ⊆ {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥}) |
| 3 | dfint2 4915 | . 2 ⊢ ∩ 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥} | |
| 4 | dfint2 4915 | . 2 ⊢ ∩ 𝐴 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
| 5 | 2, 3, 4 | 3sstr4g 4003 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∩ 𝐵 ⊆ ∩ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 {cab 2708 ∀wral 3045 ⊆ wss 3917 ∩ cint 4913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-ral 3046 df-ss 3934 df-int 4914 |
| This theorem is referenced by: uniintsn 4952 intabs 5307 cofon1 8639 naddssim 8652 fiss 9382 tc2 9702 tcss 9704 tcel 9705 rankval4 9827 cfub 10209 cflm 10210 cflecard 10213 fin23lem26 10285 clsslem 14957 mrcss 17584 lspss 20897 lbsextlem3 21077 aspss 21793 clsss 22948 1stcfb 23339 ufinffr 23823 cofcut1 27835 spanss 31284 fldgenss 33273 ss2mcls 35562 pclssN 39895 dochspss 41379 clss2lem 43607 |
| Copyright terms: Public domain | W3C validator |