![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intss | Structured version Visualization version GIF version |
Description: Intersection of subclasses. (Contributed by NM, 14-Oct-1999.) (Proof shortened by OpenAI, 25-Mar-2020.) |
Ref | Expression |
---|---|
intss | ⊢ (𝐴 ⊆ 𝐵 → ∩ 𝐵 ⊆ ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssralv 4077 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 → ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥)) | |
2 | 1 | ss2abdv 4089 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥} ⊆ {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥}) |
3 | dfint2 4972 | . 2 ⊢ ∩ 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥} | |
4 | dfint2 4972 | . 2 ⊢ ∩ 𝐴 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
5 | 2, 3, 4 | 3sstr4g 4054 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∩ 𝐵 ⊆ ∩ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 {cab 2717 ∀wral 3067 ⊆ wss 3976 ∩ cint 4970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-ral 3068 df-ss 3993 df-int 4971 |
This theorem is referenced by: uniintsn 5009 intabs 5367 cofon1 8728 naddssim 8741 fiss 9493 tc2 9811 tcss 9813 tcel 9814 rankval4 9936 cfub 10318 cflm 10319 cflecard 10322 fin23lem26 10394 clsslem 15033 mrcss 17674 lspss 21005 lbsextlem3 21185 aspss 21920 clsss 23083 1stcfb 23474 ufinffr 23958 cofcut1 27972 spanss 31380 fldgenss 33283 ss2mcls 35536 pclssN 39851 dochspss 41335 clss2lem 43573 |
Copyright terms: Public domain | W3C validator |