MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intss Structured version   Visualization version   GIF version

Theorem intss 4933
Description: Intersection of subclasses. (Contributed by NM, 14-Oct-1999.) (Proof shortened by OpenAI, 25-Mar-2020.)
Assertion
Ref Expression
intss (𝐴𝐵 𝐵 𝐴)

Proof of Theorem intss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssralv 4015 . . 3 (𝐴𝐵 → (∀𝑥𝐵 𝑦𝑥 → ∀𝑥𝐴 𝑦𝑥))
21ss2abdv 4029 . 2 (𝐴𝐵 → {𝑦 ∣ ∀𝑥𝐵 𝑦𝑥} ⊆ {𝑦 ∣ ∀𝑥𝐴 𝑦𝑥})
3 dfint2 4912 . 2 𝐵 = {𝑦 ∣ ∀𝑥𝐵 𝑦𝑥}
4 dfint2 4912 . 2 𝐴 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝑥}
52, 3, 43sstr4g 4000 1 (𝐴𝐵 𝐵 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  {cab 2707  wral 3044  wss 3914   cint 4910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-ral 3045  df-ss 3931  df-int 4911
This theorem is referenced by:  uniintsn  4949  intabs  5304  cofon1  8636  naddssim  8649  fiss  9375  tc2  9695  tcss  9697  tcel  9698  rankval4  9820  cfub  10202  cflm  10203  cflecard  10206  fin23lem26  10278  clsslem  14950  mrcss  17577  lspss  20890  lbsextlem3  21070  aspss  21786  clsss  22941  1stcfb  23332  ufinffr  23816  cofcut1  27828  spanss  31277  fldgenss  33266  ss2mcls  35555  pclssN  39888  dochspss  41372  clss2lem  43600
  Copyright terms: Public domain W3C validator