| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intss | Structured version Visualization version GIF version | ||
| Description: Intersection of subclasses. (Contributed by NM, 14-Oct-1999.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| Ref | Expression |
|---|---|
| intss | ⊢ (𝐴 ⊆ 𝐵 → ∩ 𝐵 ⊆ ∩ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssralv 4015 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 → ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥)) | |
| 2 | 1 | ss2abdv 4029 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥} ⊆ {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥}) |
| 3 | dfint2 4912 | . 2 ⊢ ∩ 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥} | |
| 4 | dfint2 4912 | . 2 ⊢ ∩ 𝐴 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
| 5 | 2, 3, 4 | 3sstr4g 4000 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∩ 𝐵 ⊆ ∩ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 {cab 2707 ∀wral 3044 ⊆ wss 3914 ∩ cint 4910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-ral 3045 df-ss 3931 df-int 4911 |
| This theorem is referenced by: uniintsn 4949 intabs 5304 cofon1 8636 naddssim 8649 fiss 9375 tc2 9695 tcss 9697 tcel 9698 rankval4 9820 cfub 10202 cflm 10203 cflecard 10206 fin23lem26 10278 clsslem 14950 mrcss 17577 lspss 20890 lbsextlem3 21070 aspss 21786 clsss 22941 1stcfb 23332 ufinffr 23816 cofcut1 27828 spanss 31277 fldgenss 33266 ss2mcls 35555 pclssN 39888 dochspss 41372 clss2lem 43600 |
| Copyright terms: Public domain | W3C validator |