| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intss | Structured version Visualization version GIF version | ||
| Description: Intersection of subclasses. (Contributed by NM, 14-Oct-1999.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| Ref | Expression |
|---|---|
| intss | ⊢ (𝐴 ⊆ 𝐵 → ∩ 𝐵 ⊆ ∩ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssralv 4032 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 → ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥)) | |
| 2 | 1 | ss2abdv 4046 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥} ⊆ {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥}) |
| 3 | dfint2 4928 | . 2 ⊢ ∩ 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥} | |
| 4 | dfint2 4928 | . 2 ⊢ ∩ 𝐴 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
| 5 | 2, 3, 4 | 3sstr4g 4017 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∩ 𝐵 ⊆ ∩ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 {cab 2712 ∀wral 3050 ⊆ wss 3931 ∩ cint 4926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-ral 3051 df-ss 3948 df-int 4927 |
| This theorem is referenced by: uniintsn 4965 intabs 5329 cofon1 8692 naddssim 8705 fiss 9446 tc2 9764 tcss 9766 tcel 9767 rankval4 9889 cfub 10271 cflm 10272 cflecard 10275 fin23lem26 10347 clsslem 15005 mrcss 17630 lspss 20950 lbsextlem3 21130 aspss 21851 clsss 23008 1stcfb 23399 ufinffr 23883 cofcut1 27890 spanss 31295 fldgenss 33258 ss2mcls 35532 pclssN 39855 dochspss 41339 clss2lem 43586 |
| Copyright terms: Public domain | W3C validator |