MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intss Structured version   Visualization version   GIF version

Theorem intss 4917
Description: Intersection of subclasses. (Contributed by NM, 14-Oct-1999.) (Proof shortened by OpenAI, 25-Mar-2020.)
Assertion
Ref Expression
intss (𝐴𝐵 𝐵 𝐴)

Proof of Theorem intss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssralv 4001 . . 3 (𝐴𝐵 → (∀𝑥𝐵 𝑦𝑥 → ∀𝑥𝐴 𝑦𝑥))
21ss2abdv 4015 . 2 (𝐴𝐵 → {𝑦 ∣ ∀𝑥𝐵 𝑦𝑥} ⊆ {𝑦 ∣ ∀𝑥𝐴 𝑦𝑥})
3 dfint2 4897 . 2 𝐵 = {𝑦 ∣ ∀𝑥𝐵 𝑦𝑥}
4 dfint2 4897 . 2 𝐴 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝑥}
52, 3, 43sstr4g 3986 1 (𝐴𝐵 𝐵 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  {cab 2708  wral 3045  wss 3900   cint 4895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-ral 3046  df-ss 3917  df-int 4896
This theorem is referenced by:  uniintsn  4933  intabs  5285  cofon1  8582  naddssim  8595  fiss  9303  tc2  9627  tcss  9629  tcel  9630  rankval4  9752  cfub  10132  cflm  10133  cflecard  10136  fin23lem26  10208  clsslem  14883  mrcss  17514  lspss  20910  lbsextlem3  21090  aspss  21807  clsss  22962  1stcfb  23353  ufinffr  23837  cofcut1  27857  spanss  31318  fldgenss  33272  ss2mcls  35580  pclssN  39912  dochspss  41396  clss2lem  43623
  Copyright terms: Public domain W3C validator