| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intss | Structured version Visualization version GIF version | ||
| Description: Intersection of subclasses. (Contributed by NM, 14-Oct-1999.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| Ref | Expression |
|---|---|
| intss | ⊢ (𝐴 ⊆ 𝐵 → ∩ 𝐵 ⊆ ∩ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssralv 4006 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 → ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥)) | |
| 2 | 1 | ss2abdv 4020 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥} ⊆ {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥}) |
| 3 | dfint2 4901 | . 2 ⊢ ∩ 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥} | |
| 4 | dfint2 4901 | . 2 ⊢ ∩ 𝐴 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
| 5 | 2, 3, 4 | 3sstr4g 3991 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∩ 𝐵 ⊆ ∩ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 {cab 2707 ∀wral 3044 ⊆ wss 3905 ∩ cint 4899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-ral 3045 df-ss 3922 df-int 4900 |
| This theorem is referenced by: uniintsn 4938 intabs 5291 cofon1 8597 naddssim 8610 fiss 9333 tc2 9657 tcss 9659 tcel 9660 rankval4 9782 cfub 10162 cflm 10163 cflecard 10166 fin23lem26 10238 clsslem 14909 mrcss 17540 lspss 20905 lbsextlem3 21085 aspss 21802 clsss 22957 1stcfb 23348 ufinffr 23832 cofcut1 27851 spanss 31310 fldgenss 33265 ss2mcls 35540 pclssN 39873 dochspss 41357 clss2lem 43584 |
| Copyright terms: Public domain | W3C validator |