MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intss Structured version   Visualization version   GIF version

Theorem intss 4900
Description: Intersection of subclasses. (Contributed by NM, 14-Oct-1999.) (Proof shortened by OpenAI, 25-Mar-2020.)
Assertion
Ref Expression
intss (𝐴𝐵 𝐵 𝐴)

Proof of Theorem intss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssralv 3987 . . 3 (𝐴𝐵 → (∀𝑥𝐵 𝑦𝑥 → ∀𝑥𝐴 𝑦𝑥))
21ss2abdv 3997 . 2 (𝐴𝐵 → {𝑦 ∣ ∀𝑥𝐵 𝑦𝑥} ⊆ {𝑦 ∣ ∀𝑥𝐴 𝑦𝑥})
3 dfint2 4881 . 2 𝐵 = {𝑦 ∣ ∀𝑥𝐵 𝑦𝑥}
4 dfint2 4881 . 2 𝐴 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝑥}
52, 3, 43sstr4g 3966 1 (𝐴𝐵 𝐵 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  {cab 2715  wral 3064  wss 3887   cint 4879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-v 3434  df-in 3894  df-ss 3904  df-int 4880
This theorem is referenced by:  uniintsn  4918  intabs  5266  fiss  9183  tc2  9500  tcss  9502  tcel  9503  rankval4  9625  cfub  10005  cflm  10006  cflecard  10009  fin23lem26  10081  clsslem  14695  mrcss  17325  lspss  20246  lbsextlem3  20422  aspss  21081  clsss  22205  1stcfb  22596  ufinffr  23080  spanss  29710  ss2mcls  33530  naddssim  33837  cofcut1  34090  pclssN  37908  dochspss  39392  clss2lem  41219
  Copyright terms: Public domain W3C validator