| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intss | Structured version Visualization version GIF version | ||
| Description: Intersection of subclasses. (Contributed by NM, 14-Oct-1999.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| Ref | Expression |
|---|---|
| intss | ⊢ (𝐴 ⊆ 𝐵 → ∩ 𝐵 ⊆ ∩ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssralv 4001 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 → ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥)) | |
| 2 | 1 | ss2abdv 4015 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥} ⊆ {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥}) |
| 3 | dfint2 4897 | . 2 ⊢ ∩ 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥} | |
| 4 | dfint2 4897 | . 2 ⊢ ∩ 𝐴 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
| 5 | 2, 3, 4 | 3sstr4g 3986 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∩ 𝐵 ⊆ ∩ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 {cab 2708 ∀wral 3045 ⊆ wss 3900 ∩ cint 4895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-ral 3046 df-ss 3917 df-int 4896 |
| This theorem is referenced by: uniintsn 4933 intabs 5285 cofon1 8582 naddssim 8595 fiss 9303 tc2 9627 tcss 9629 tcel 9630 rankval4 9752 cfub 10132 cflm 10133 cflecard 10136 fin23lem26 10208 clsslem 14883 mrcss 17514 lspss 20910 lbsextlem3 21090 aspss 21807 clsss 22962 1stcfb 23353 ufinffr 23837 cofcut1 27857 spanss 31318 fldgenss 33272 ss2mcls 35580 pclssN 39912 dochspss 41396 clss2lem 43623 |
| Copyright terms: Public domain | W3C validator |