Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  con3ALTVD Structured version   Visualization version   GIF version

Theorem con3ALTVD 44905
Description: The following User's Proof is a Natural Deduction Sequent Calculus transcription of the Fitch-style Natural Deduction proof of Theorem 7 of Section 14 of [Margaris] p. 60 (which is con3 153). The same proof may also be interpreted to be a Virtual Deduction Hilbert-style axiomatic proof. It was completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. con3ALT2 44520 is con3ALTVD 44905 without virtual deductions and was automatically derived from con3ALTVD 44905. Step i of the User's Proof corresponds to step i of the Fitch-style proof.
1:: (   (𝜑𝜓)   ▶   (𝜑𝜓)   )
2:: (   (𝜑𝜓)   ,   ¬ ¬ 𝜑   ▶   ¬ ¬ 𝜑   )
3:: (¬ ¬ 𝜑𝜑)
4:2: (   (𝜑𝜓)   ,   ¬ ¬ 𝜑   ▶   𝜑   )
5:1,4: (   (𝜑𝜓)   ,   ¬ ¬ 𝜑   ▶   𝜓   )
6:: (𝜓 → ¬ ¬ 𝜓)
7:6,5: (   (𝜑𝜓)   ,   ¬ ¬ 𝜑   ▶   ¬ ¬ 𝜓   )
8:7: (   (𝜑𝜓)   ▶   (¬ ¬ 𝜑 → ¬ ¬ 𝜓 )   )
9:: ((¬ ¬ 𝜑 → ¬ ¬ 𝜓) → (¬ 𝜓 ¬ 𝜑))
10:8: (   (𝜑𝜓)   ▶   𝜓 → ¬ 𝜑)   )
qed:10: ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
con3ALTVD ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))

Proof of Theorem con3ALTVD
StepHypRef Expression
1 idn1 44564 . . . . . 6 (   (𝜑𝜓)   ▶   (𝜑𝜓)   )
2 idn2 44603 . . . . . . 7 (   (𝜑𝜓)   ,    ¬ ¬ 𝜑   ▶    ¬ ¬ 𝜑   )
3 notnotr 130 . . . . . . 7 (¬ ¬ 𝜑𝜑)
42, 3e2 44621 . . . . . 6 (   (𝜑𝜓)   ,    ¬ ¬ 𝜑   ▶   𝜑   )
5 id 22 . . . . . 6 ((𝜑𝜓) → (𝜑𝜓))
61, 4, 5e12 44713 . . . . 5 (   (𝜑𝜓)   ,    ¬ ¬ 𝜑   ▶   𝜓   )
7 notnot 142 . . . . 5 (𝜓 → ¬ ¬ 𝜓)
86, 7e2 44621 . . . 4 (   (𝜑𝜓)   ,    ¬ ¬ 𝜑   ▶    ¬ ¬ 𝜓   )
98in2 44595 . . 3 (   (𝜑𝜓)   ▶   (¬ ¬ 𝜑 → ¬ ¬ 𝜓)   )
10 con4 113 . . 3 ((¬ ¬ 𝜑 → ¬ ¬ 𝜓) → (¬ 𝜓 → ¬ 𝜑))
119, 10e1a 44617 . 2 (   (𝜑𝜓)   ▶   𝜓 → ¬ 𝜑)   )
1211in1 44561 1 ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-vd1 44560  df-vd2 44568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator