Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  con3ALTVD Structured version   Visualization version   GIF version

Theorem con3ALTVD 43667
Description: The following User's Proof is a Natural Deduction Sequent Calculus transcription of the Fitch-style Natural Deduction proof of Theorem 7 of Section 14 of [Margaris] p. 60 (which is con3 153). The same proof may also be interpreted to be a Virtual Deduction Hilbert-style axiomatic proof. It was completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. con3ALT2 43281 is con3ALTVD 43667 without virtual deductions and was automatically derived from con3ALTVD 43667. Step i of the User's Proof corresponds to step i of the Fitch-style proof.
1:: (   (𝜑𝜓)   ▶   (𝜑𝜓)   )
2:: (   (𝜑𝜓)   ,   ¬ ¬ 𝜑   ▶   ¬ ¬ 𝜑   )
3:: (¬ ¬ 𝜑𝜑)
4:2: (   (𝜑𝜓)   ,   ¬ ¬ 𝜑   ▶   𝜑   )
5:1,4: (   (𝜑𝜓)   ,   ¬ ¬ 𝜑   ▶   𝜓   )
6:: (𝜓 → ¬ ¬ 𝜓)
7:6,5: (   (𝜑𝜓)   ,   ¬ ¬ 𝜑   ▶   ¬ ¬ 𝜓   )
8:7: (   (𝜑𝜓)   ▶   (¬ ¬ 𝜑 → ¬ ¬ 𝜓 )   )
9:: ((¬ ¬ 𝜑 → ¬ ¬ 𝜓) → (¬ 𝜓 ¬ 𝜑))
10:8: (   (𝜑𝜓)   ▶   𝜓 → ¬ 𝜑)   )
qed:10: ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
con3ALTVD ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))

Proof of Theorem con3ALTVD
StepHypRef Expression
1 idn1 43325 . . . . . 6 (   (𝜑𝜓)   ▶   (𝜑𝜓)   )
2 idn2 43364 . . . . . . 7 (   (𝜑𝜓)   ,    ¬ ¬ 𝜑   ▶    ¬ ¬ 𝜑   )
3 notnotr 130 . . . . . . 7 (¬ ¬ 𝜑𝜑)
42, 3e2 43382 . . . . . 6 (   (𝜑𝜓)   ,    ¬ ¬ 𝜑   ▶   𝜑   )
5 id 22 . . . . . 6 ((𝜑𝜓) → (𝜑𝜓))
61, 4, 5e12 43475 . . . . 5 (   (𝜑𝜓)   ,    ¬ ¬ 𝜑   ▶   𝜓   )
7 notnot 142 . . . . 5 (𝜓 → ¬ ¬ 𝜓)
86, 7e2 43382 . . . 4 (   (𝜑𝜓)   ,    ¬ ¬ 𝜑   ▶    ¬ ¬ 𝜓   )
98in2 43356 . . 3 (   (𝜑𝜓)   ▶   (¬ ¬ 𝜑 → ¬ ¬ 𝜓)   )
10 con4 113 . . 3 ((¬ ¬ 𝜑 → ¬ ¬ 𝜓) → (¬ 𝜓 → ¬ 𝜑))
119, 10e1a 43378 . 2 (   (𝜑𝜓)   ▶   𝜓 → ¬ 𝜑)   )
1211in1 43322 1 ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-vd1 43321  df-vd2 43329
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator