Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  con3ALTVD Structured version   Visualization version   GIF version

Theorem con3ALTVD 44912
Description: The following User's Proof is a Natural Deduction Sequent Calculus transcription of the Fitch-style Natural Deduction proof of Theorem 7 of Section 14 of [Margaris] p. 60 (which is con3 153). The same proof may also be interpreted to be a Virtual Deduction Hilbert-style axiomatic proof. It was completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. con3ALT2 44527 is con3ALTVD 44912 without virtual deductions and was automatically derived from con3ALTVD 44912. Step i of the User's Proof corresponds to step i of the Fitch-style proof.
1:: (   (𝜑𝜓)   ▶   (𝜑𝜓)   )
2:: (   (𝜑𝜓)   ,   ¬ ¬ 𝜑   ▶   ¬ ¬ 𝜑   )
3:: (¬ ¬ 𝜑𝜑)
4:2: (   (𝜑𝜓)   ,   ¬ ¬ 𝜑   ▶   𝜑   )
5:1,4: (   (𝜑𝜓)   ,   ¬ ¬ 𝜑   ▶   𝜓   )
6:: (𝜓 → ¬ ¬ 𝜓)
7:6,5: (   (𝜑𝜓)   ,   ¬ ¬ 𝜑   ▶   ¬ ¬ 𝜓   )
8:7: (   (𝜑𝜓)   ▶   (¬ ¬ 𝜑 → ¬ ¬ 𝜓 )   )
9:: ((¬ ¬ 𝜑 → ¬ ¬ 𝜓) → (¬ 𝜓 ¬ 𝜑))
10:8: (   (𝜑𝜓)   ▶   𝜓 → ¬ 𝜑)   )
qed:10: ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
con3ALTVD ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))

Proof of Theorem con3ALTVD
StepHypRef Expression
1 idn1 44571 . . . . . 6 (   (𝜑𝜓)   ▶   (𝜑𝜓)   )
2 idn2 44610 . . . . . . 7 (   (𝜑𝜓)   ,    ¬ ¬ 𝜑   ▶    ¬ ¬ 𝜑   )
3 notnotr 130 . . . . . . 7 (¬ ¬ 𝜑𝜑)
42, 3e2 44628 . . . . . 6 (   (𝜑𝜓)   ,    ¬ ¬ 𝜑   ▶   𝜑   )
5 id 22 . . . . . 6 ((𝜑𝜓) → (𝜑𝜓))
61, 4, 5e12 44720 . . . . 5 (   (𝜑𝜓)   ,    ¬ ¬ 𝜑   ▶   𝜓   )
7 notnot 142 . . . . 5 (𝜓 → ¬ ¬ 𝜓)
86, 7e2 44628 . . . 4 (   (𝜑𝜓)   ,    ¬ ¬ 𝜑   ▶    ¬ ¬ 𝜓   )
98in2 44602 . . 3 (   (𝜑𝜓)   ▶   (¬ ¬ 𝜑 → ¬ ¬ 𝜓)   )
10 con4 113 . . 3 ((¬ ¬ 𝜑 → ¬ ¬ 𝜓) → (¬ 𝜓 → ¬ 𝜑))
119, 10e1a 44624 . 2 (   (𝜑𝜓)   ▶   𝜓 → ¬ 𝜑)   )
1211in1 44568 1 ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-vd1 44567  df-vd2 44575
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator