Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cossres Structured version   Visualization version   GIF version

Theorem 1cossres 37941
Description: The class of cosets by a restriction. (Contributed by Peter Mazsa, 20-Apr-2019.)
Assertion
Ref Expression
1cossres ≀ (𝑅𝐴) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢𝑅𝑦)}
Distinct variable groups:   𝑢,𝐴,𝑥,𝑦   𝑢,𝑅,𝑥,𝑦

Proof of Theorem 1cossres
StepHypRef Expression
1 df-coss 37923 . 2 ≀ (𝑅𝐴) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢(𝑅𝐴)𝑥𝑢(𝑅𝐴)𝑦)}
2 df-rex 3068 . . . 4 (∃𝑢𝐴 (𝑢𝑅𝑥𝑢𝑅𝑦) ↔ ∃𝑢(𝑢𝐴 ∧ (𝑢𝑅𝑥𝑢𝑅𝑦)))
3 anandi 674 . . . . . 6 ((𝑢𝐴 ∧ (𝑢𝑅𝑥𝑢𝑅𝑦)) ↔ ((𝑢𝐴𝑢𝑅𝑥) ∧ (𝑢𝐴𝑢𝑅𝑦)))
4 brres 5996 . . . . . . . 8 (𝑥 ∈ V → (𝑢(𝑅𝐴)𝑥 ↔ (𝑢𝐴𝑢𝑅𝑥)))
54elv 3479 . . . . . . 7 (𝑢(𝑅𝐴)𝑥 ↔ (𝑢𝐴𝑢𝑅𝑥))
6 brres 5996 . . . . . . . 8 (𝑦 ∈ V → (𝑢(𝑅𝐴)𝑦 ↔ (𝑢𝐴𝑢𝑅𝑦)))
76elv 3479 . . . . . . 7 (𝑢(𝑅𝐴)𝑦 ↔ (𝑢𝐴𝑢𝑅𝑦))
85, 7anbi12i 626 . . . . . 6 ((𝑢(𝑅𝐴)𝑥𝑢(𝑅𝐴)𝑦) ↔ ((𝑢𝐴𝑢𝑅𝑥) ∧ (𝑢𝐴𝑢𝑅𝑦)))
93, 8bitr4i 277 . . . . 5 ((𝑢𝐴 ∧ (𝑢𝑅𝑥𝑢𝑅𝑦)) ↔ (𝑢(𝑅𝐴)𝑥𝑢(𝑅𝐴)𝑦))
109exbii 1842 . . . 4 (∃𝑢(𝑢𝐴 ∧ (𝑢𝑅𝑥𝑢𝑅𝑦)) ↔ ∃𝑢(𝑢(𝑅𝐴)𝑥𝑢(𝑅𝐴)𝑦))
112, 10bitri 274 . . 3 (∃𝑢𝐴 (𝑢𝑅𝑥𝑢𝑅𝑦) ↔ ∃𝑢(𝑢(𝑅𝐴)𝑥𝑢(𝑅𝐴)𝑦))
1211opabbii 5219 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢𝑅𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢(𝑅𝐴)𝑥𝑢(𝑅𝐴)𝑦)}
131, 12eqtr4i 2759 1 ≀ (𝑅𝐴) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢𝑅𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1533  wex 1773  wcel 2098  wrex 3067  Vcvv 3473   class class class wbr 5152  {copab 5214  cres 5684  ccoss 37689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-opab 5215  df-xp 5688  df-res 5694  df-coss 37923
This theorem is referenced by:  dfcoels  37942
  Copyright terms: Public domain W3C validator