| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1cossres | Structured version Visualization version GIF version | ||
| Description: The class of cosets by a restriction. (Contributed by Peter Mazsa, 20-Apr-2019.) |
| Ref | Expression |
|---|---|
| 1cossres | ⊢ ≀ (𝑅 ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-coss 38456 | . 2 ⊢ ≀ (𝑅 ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢(𝑅 ↾ 𝐴)𝑥 ∧ 𝑢(𝑅 ↾ 𝐴)𝑦)} | |
| 2 | df-rex 3057 | . . . 4 ⊢ (∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦))) | |
| 3 | anandi 676 | . . . . . 6 ⊢ ((𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑦))) | |
| 4 | brres 5934 | . . . . . . . 8 ⊢ (𝑥 ∈ V → (𝑢(𝑅 ↾ 𝐴)𝑥 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥))) | |
| 5 | 4 | elv 3441 | . . . . . . 7 ⊢ (𝑢(𝑅 ↾ 𝐴)𝑥 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥)) |
| 6 | brres 5934 | . . . . . . . 8 ⊢ (𝑦 ∈ V → (𝑢(𝑅 ↾ 𝐴)𝑦 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑦))) | |
| 7 | 6 | elv 3441 | . . . . . . 7 ⊢ (𝑢(𝑅 ↾ 𝐴)𝑦 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑦)) |
| 8 | 5, 7 | anbi12i 628 | . . . . . 6 ⊢ ((𝑢(𝑅 ↾ 𝐴)𝑥 ∧ 𝑢(𝑅 ↾ 𝐴)𝑦) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑦))) |
| 9 | 3, 8 | bitr4i 278 | . . . . 5 ⊢ ((𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)) ↔ (𝑢(𝑅 ↾ 𝐴)𝑥 ∧ 𝑢(𝑅 ↾ 𝐴)𝑦)) |
| 10 | 9 | exbii 1849 | . . . 4 ⊢ (∃𝑢(𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)) ↔ ∃𝑢(𝑢(𝑅 ↾ 𝐴)𝑥 ∧ 𝑢(𝑅 ↾ 𝐴)𝑦)) |
| 11 | 2, 10 | bitri 275 | . . 3 ⊢ (∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) ↔ ∃𝑢(𝑢(𝑅 ↾ 𝐴)𝑥 ∧ 𝑢(𝑅 ↾ 𝐴)𝑦)) |
| 12 | 11 | opabbii 5156 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢(𝑅 ↾ 𝐴)𝑥 ∧ 𝑢(𝑅 ↾ 𝐴)𝑦)} |
| 13 | 1, 12 | eqtr4i 2757 | 1 ⊢ ≀ (𝑅 ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 class class class wbr 5089 {copab 5151 ↾ cres 5616 ≀ ccoss 38223 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-res 5626 df-coss 38456 |
| This theorem is referenced by: dfcoels 38475 |
| Copyright terms: Public domain | W3C validator |