Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1cossres | Structured version Visualization version GIF version |
Description: The class of cosets by a restriction. (Contributed by Peter Mazsa, 20-Apr-2019.) |
Ref | Expression |
---|---|
1cossres | ⊢ ≀ (𝑅 ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coss 36464 | . 2 ⊢ ≀ (𝑅 ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢(𝑅 ↾ 𝐴)𝑥 ∧ 𝑢(𝑅 ↾ 𝐴)𝑦)} | |
2 | df-rex 3069 | . . . 4 ⊢ (∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦))) | |
3 | anandi 672 | . . . . . 6 ⊢ ((𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑦))) | |
4 | brres 5887 | . . . . . . . 8 ⊢ (𝑥 ∈ V → (𝑢(𝑅 ↾ 𝐴)𝑥 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥))) | |
5 | 4 | elv 3428 | . . . . . . 7 ⊢ (𝑢(𝑅 ↾ 𝐴)𝑥 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥)) |
6 | brres 5887 | . . . . . . . 8 ⊢ (𝑦 ∈ V → (𝑢(𝑅 ↾ 𝐴)𝑦 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑦))) | |
7 | 6 | elv 3428 | . . . . . . 7 ⊢ (𝑢(𝑅 ↾ 𝐴)𝑦 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑦)) |
8 | 5, 7 | anbi12i 626 | . . . . . 6 ⊢ ((𝑢(𝑅 ↾ 𝐴)𝑥 ∧ 𝑢(𝑅 ↾ 𝐴)𝑦) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑦))) |
9 | 3, 8 | bitr4i 277 | . . . . 5 ⊢ ((𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)) ↔ (𝑢(𝑅 ↾ 𝐴)𝑥 ∧ 𝑢(𝑅 ↾ 𝐴)𝑦)) |
10 | 9 | exbii 1851 | . . . 4 ⊢ (∃𝑢(𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)) ↔ ∃𝑢(𝑢(𝑅 ↾ 𝐴)𝑥 ∧ 𝑢(𝑅 ↾ 𝐴)𝑦)) |
11 | 2, 10 | bitri 274 | . . 3 ⊢ (∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) ↔ ∃𝑢(𝑢(𝑅 ↾ 𝐴)𝑥 ∧ 𝑢(𝑅 ↾ 𝐴)𝑦)) |
12 | 11 | opabbii 5137 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢(𝑅 ↾ 𝐴)𝑥 ∧ 𝑢(𝑅 ↾ 𝐴)𝑦)} |
13 | 1, 12 | eqtr4i 2769 | 1 ⊢ ≀ (𝑅 ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∃wrex 3064 Vcvv 3422 class class class wbr 5070 {copab 5132 ↾ cres 5582 ≀ ccoss 36260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-res 5592 df-coss 36464 |
This theorem is referenced by: dfcoels 36480 |
Copyright terms: Public domain | W3C validator |