Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  releldmqscoss Structured version   Visualization version   GIF version

Theorem releldmqscoss 35930
Description: Elementhood in the domain quotient of the class of cosets by a relation. (Contributed by Peter Mazsa, 23-Apr-2021.)
Assertion
Ref Expression
releldmqscoss (𝐴𝑉 → (Rel 𝑅 → (𝐴 ∈ (dom ≀ 𝑅 /𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ 𝑅)))
Distinct variable groups:   𝑢,𝐴,𝑥   𝑢,𝑅,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑢)

Proof of Theorem releldmqscoss
StepHypRef Expression
1 eldmqs1cossres 35929 . . . 4 (𝐴𝑉 → (𝐴 ∈ (dom ≀ (𝑅 ↾ dom 𝑅) / ≀ (𝑅 ↾ dom 𝑅)) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ (𝑅 ↾ dom 𝑅)))
21adantr 483 . . 3 ((𝐴𝑉 ∧ Rel 𝑅) → (𝐴 ∈ (dom ≀ (𝑅 ↾ dom 𝑅) / ≀ (𝑅 ↾ dom 𝑅)) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ (𝑅 ↾ dom 𝑅)))
3 resdm 5894 . . . . . . 7 (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅)
43cosseqd 35709 . . . . . 6 (Rel 𝑅 → ≀ (𝑅 ↾ dom 𝑅) = ≀ 𝑅)
54dmqseqd 35913 . . . . 5 (Rel 𝑅 → (dom ≀ (𝑅 ↾ dom 𝑅) / ≀ (𝑅 ↾ dom 𝑅)) = (dom ≀ 𝑅 /𝑅))
65eleq2d 2897 . . . 4 (Rel 𝑅 → (𝐴 ∈ (dom ≀ (𝑅 ↾ dom 𝑅) / ≀ (𝑅 ↾ dom 𝑅)) ↔ 𝐴 ∈ (dom ≀ 𝑅 /𝑅)))
76adantl 484 . . 3 ((𝐴𝑉 ∧ Rel 𝑅) → (𝐴 ∈ (dom ≀ (𝑅 ↾ dom 𝑅) / ≀ (𝑅 ↾ dom 𝑅)) ↔ 𝐴 ∈ (dom ≀ 𝑅 /𝑅)))
84eceq2d 8328 . . . . . 6 (Rel 𝑅 → [𝑥] ≀ (𝑅 ↾ dom 𝑅) = [𝑥] ≀ 𝑅)
98eqeq2d 2831 . . . . 5 (Rel 𝑅 → (𝐴 = [𝑥] ≀ (𝑅 ↾ dom 𝑅) ↔ 𝐴 = [𝑥] ≀ 𝑅))
1092rexbidv 3299 . . . 4 (Rel 𝑅 → (∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ (𝑅 ↾ dom 𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ 𝑅))
1110adantl 484 . . 3 ((𝐴𝑉 ∧ Rel 𝑅) → (∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ (𝑅 ↾ dom 𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ 𝑅))
122, 7, 113bitr3d 311 . 2 ((𝐴𝑉 ∧ Rel 𝑅) → (𝐴 ∈ (dom ≀ 𝑅 /𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ 𝑅))
1312ex 415 1 (𝐴𝑉 → (Rel 𝑅 → (𝐴 ∈ (dom ≀ 𝑅 /𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wrex 3138  dom cdm 5552  cres 5554  Rel wrel 5557  [cec 8284   / cqs 8285  ccoss 35489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5200  ax-nul 5207  ax-pr 5327
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3495  df-sbc 3771  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4465  df-sn 4565  df-pr 4567  df-op 4571  df-br 5064  df-opab 5126  df-xp 5558  df-rel 5559  df-cnv 5560  df-co 5561  df-dm 5562  df-rn 5563  df-res 5564  df-ima 5565  df-ec 8288  df-qs 8292  df-coss 35695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator