![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > releldmqscoss | Structured version Visualization version GIF version |
Description: Elementhood in the domain quotient of the class of cosets by a relation. (Contributed by Peter Mazsa, 23-Apr-2021.) |
Ref | Expression |
---|---|
releldmqscoss | ⊢ (𝐴 ∈ 𝑉 → (Rel 𝑅 → (𝐴 ∈ (dom ≀ 𝑅 / ≀ 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmqs1cossres 38019 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (dom ≀ (𝑅 ↾ dom 𝑅) / ≀ (𝑅 ↾ dom 𝑅)) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ (𝑅 ↾ dom 𝑅))) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ Rel 𝑅) → (𝐴 ∈ (dom ≀ (𝑅 ↾ dom 𝑅) / ≀ (𝑅 ↾ dom 𝑅)) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ (𝑅 ↾ dom 𝑅))) |
3 | resdm 6016 | . . . . . . 7 ⊢ (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅) | |
4 | 3 | cosseqd 37788 | . . . . . 6 ⊢ (Rel 𝑅 → ≀ (𝑅 ↾ dom 𝑅) = ≀ 𝑅) |
5 | 4 | dmqseqd 38002 | . . . . 5 ⊢ (Rel 𝑅 → (dom ≀ (𝑅 ↾ dom 𝑅) / ≀ (𝑅 ↾ dom 𝑅)) = (dom ≀ 𝑅 / ≀ 𝑅)) |
6 | 5 | eleq2d 2811 | . . . 4 ⊢ (Rel 𝑅 → (𝐴 ∈ (dom ≀ (𝑅 ↾ dom 𝑅) / ≀ (𝑅 ↾ dom 𝑅)) ↔ 𝐴 ∈ (dom ≀ 𝑅 / ≀ 𝑅))) |
7 | 6 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ Rel 𝑅) → (𝐴 ∈ (dom ≀ (𝑅 ↾ dom 𝑅) / ≀ (𝑅 ↾ dom 𝑅)) ↔ 𝐴 ∈ (dom ≀ 𝑅 / ≀ 𝑅))) |
8 | 4 | eceq2d 8741 | . . . . . 6 ⊢ (Rel 𝑅 → [𝑥] ≀ (𝑅 ↾ dom 𝑅) = [𝑥] ≀ 𝑅) |
9 | 8 | eqeq2d 2735 | . . . . 5 ⊢ (Rel 𝑅 → (𝐴 = [𝑥] ≀ (𝑅 ↾ dom 𝑅) ↔ 𝐴 = [𝑥] ≀ 𝑅)) |
10 | 9 | 2rexbidv 3211 | . . . 4 ⊢ (Rel 𝑅 → (∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ (𝑅 ↾ dom 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ 𝑅)) |
11 | 10 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ Rel 𝑅) → (∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ (𝑅 ↾ dom 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ 𝑅)) |
12 | 2, 7, 11 | 3bitr3d 309 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ Rel 𝑅) → (𝐴 ∈ (dom ≀ 𝑅 / ≀ 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ 𝑅)) |
13 | 12 | ex 412 | 1 ⊢ (𝐴 ∈ 𝑉 → (Rel 𝑅 → (𝐴 ∈ (dom ≀ 𝑅 / ≀ 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∃wrex 3062 dom cdm 5666 ↾ cres 5668 Rel wrel 5671 [cec 8697 / cqs 8698 ≀ ccoss 37533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-ec 8701 df-qs 8705 df-coss 37771 |
This theorem is referenced by: disjdmqsss 38162 disjdmqscossss 38163 |
Copyright terms: Public domain | W3C validator |