![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > releldmqscoss | Structured version Visualization version GIF version |
Description: Elementhood in the domain quotient of the class of cosets by a relation. (Contributed by Peter Mazsa, 23-Apr-2021.) |
Ref | Expression |
---|---|
releldmqscoss | ⊢ (𝐴 ∈ 𝑉 → (Rel 𝑅 → (𝐴 ∈ (dom ≀ 𝑅 / ≀ 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmqs1cossres 38615 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (dom ≀ (𝑅 ↾ dom 𝑅) / ≀ (𝑅 ↾ dom 𝑅)) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ (𝑅 ↾ dom 𝑅))) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ Rel 𝑅) → (𝐴 ∈ (dom ≀ (𝑅 ↾ dom 𝑅) / ≀ (𝑅 ↾ dom 𝑅)) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ (𝑅 ↾ dom 𝑅))) |
3 | resdm 6055 | . . . . . . 7 ⊢ (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅) | |
4 | 3 | cosseqd 38384 | . . . . . 6 ⊢ (Rel 𝑅 → ≀ (𝑅 ↾ dom 𝑅) = ≀ 𝑅) |
5 | 4 | dmqseqd 38598 | . . . . 5 ⊢ (Rel 𝑅 → (dom ≀ (𝑅 ↾ dom 𝑅) / ≀ (𝑅 ↾ dom 𝑅)) = (dom ≀ 𝑅 / ≀ 𝑅)) |
6 | 5 | eleq2d 2830 | . . . 4 ⊢ (Rel 𝑅 → (𝐴 ∈ (dom ≀ (𝑅 ↾ dom 𝑅) / ≀ (𝑅 ↾ dom 𝑅)) ↔ 𝐴 ∈ (dom ≀ 𝑅 / ≀ 𝑅))) |
7 | 6 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ Rel 𝑅) → (𝐴 ∈ (dom ≀ (𝑅 ↾ dom 𝑅) / ≀ (𝑅 ↾ dom 𝑅)) ↔ 𝐴 ∈ (dom ≀ 𝑅 / ≀ 𝑅))) |
8 | 4 | eceq2d 8806 | . . . . . 6 ⊢ (Rel 𝑅 → [𝑥] ≀ (𝑅 ↾ dom 𝑅) = [𝑥] ≀ 𝑅) |
9 | 8 | eqeq2d 2751 | . . . . 5 ⊢ (Rel 𝑅 → (𝐴 = [𝑥] ≀ (𝑅 ↾ dom 𝑅) ↔ 𝐴 = [𝑥] ≀ 𝑅)) |
10 | 9 | 2rexbidv 3228 | . . . 4 ⊢ (Rel 𝑅 → (∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ (𝑅 ↾ dom 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ 𝑅)) |
11 | 10 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ Rel 𝑅) → (∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ (𝑅 ↾ dom 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ 𝑅)) |
12 | 2, 7, 11 | 3bitr3d 309 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ Rel 𝑅) → (𝐴 ∈ (dom ≀ 𝑅 / ≀ 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ 𝑅)) |
13 | 12 | ex 412 | 1 ⊢ (𝐴 ∈ 𝑉 → (Rel 𝑅 → (𝐴 ∈ (dom ≀ 𝑅 / ≀ 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 dom cdm 5700 ↾ cres 5702 Rel wrel 5705 [cec 8761 / cqs 8762 ≀ ccoss 38135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ec 8765 df-qs 8769 df-coss 38367 |
This theorem is referenced by: disjdmqsss 38758 disjdmqscossss 38759 |
Copyright terms: Public domain | W3C validator |