Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > relbrcoss | Structured version Visualization version GIF version |
Description: 𝐴 and 𝐵 are cosets by relation 𝑅: a binary relation. (Contributed by Peter Mazsa, 22-Apr-2021.) |
Ref | Expression |
---|---|
relbrcoss | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (Rel 𝑅 → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅 ∧ 𝐵 ∈ [𝑥]𝑅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resdm 5978 | . . . . . 6 ⊢ (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅) | |
2 | 1 | cosseqd 36750 | . . . . 5 ⊢ (Rel 𝑅 → ≀ (𝑅 ↾ dom 𝑅) = ≀ 𝑅) |
3 | 2 | breqd 5114 | . . . 4 ⊢ (Rel 𝑅 → (𝐴 ≀ (𝑅 ↾ dom 𝑅)𝐵 ↔ 𝐴 ≀ 𝑅𝐵)) |
4 | 3 | adantl 483 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Rel 𝑅) → (𝐴 ≀ (𝑅 ↾ dom 𝑅)𝐵 ↔ 𝐴 ≀ 𝑅𝐵)) |
5 | br1cossres2 36762 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ (𝑅 ↾ dom 𝑅)𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅 ∧ 𝐵 ∈ [𝑥]𝑅))) | |
6 | 5 | adantr 482 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Rel 𝑅) → (𝐴 ≀ (𝑅 ↾ dom 𝑅)𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅 ∧ 𝐵 ∈ [𝑥]𝑅))) |
7 | 4, 6 | bitr3d 281 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Rel 𝑅) → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅 ∧ 𝐵 ∈ [𝑥]𝑅))) |
8 | 7 | ex 414 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (Rel 𝑅 → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅 ∧ 𝐵 ∈ [𝑥]𝑅)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2106 ∃wrex 3071 class class class wbr 5103 dom cdm 5630 ↾ cres 5632 Rel wrel 5635 [cec 8579 ≀ ccoss 36493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-sep 5254 ax-nul 5261 ax-pr 5382 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-nul 4281 df-if 4485 df-sn 4585 df-pr 4587 df-op 4591 df-br 5104 df-opab 5166 df-xp 5636 df-rel 5637 df-cnv 5638 df-dm 5640 df-rn 5641 df-res 5642 df-ima 5643 df-ec 8583 df-coss 36733 |
This theorem is referenced by: disjlem18 37122 |
Copyright terms: Public domain | W3C validator |