Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relbrcoss Structured version   Visualization version   GIF version

Theorem relbrcoss 38621
Description: 𝐴 and 𝐵 are cosets by relation 𝑅: a binary relation. (Contributed by Peter Mazsa, 22-Apr-2021.)
Assertion
Ref Expression
relbrcoss ((𝐴𝑉𝐵𝑊) → (Rel 𝑅 → (𝐴𝑅𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉   𝑥,𝑊

Proof of Theorem relbrcoss
StepHypRef Expression
1 resdm 5982 . . . . . 6 (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅)
21cosseqd 38603 . . . . 5 (Rel 𝑅 → ≀ (𝑅 ↾ dom 𝑅) = ≀ 𝑅)
32breqd 5106 . . . 4 (Rel 𝑅 → (𝐴 ≀ (𝑅 ↾ dom 𝑅)𝐵𝐴𝑅𝐵))
43adantl 481 . . 3 (((𝐴𝑉𝐵𝑊) ∧ Rel 𝑅) → (𝐴 ≀ (𝑅 ↾ dom 𝑅)𝐵𝐴𝑅𝐵))
5 br1cossres2 38615 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐴 ≀ (𝑅 ↾ dom 𝑅)𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅)))
65adantr 480 . . 3 (((𝐴𝑉𝐵𝑊) ∧ Rel 𝑅) → (𝐴 ≀ (𝑅 ↾ dom 𝑅)𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅)))
74, 6bitr3d 281 . 2 (((𝐴𝑉𝐵𝑊) ∧ Rel 𝑅) → (𝐴𝑅𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅)))
87ex 412 1 ((𝐴𝑉𝐵𝑊) → (Rel 𝑅 → (𝐴𝑅𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2113  wrex 3057   class class class wbr 5095  dom cdm 5621  cres 5623  Rel wrel 5626  [cec 8629  ccoss 38295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ec 8633  df-coss 38586
This theorem is referenced by:  disjlem18  38971
  Copyright terms: Public domain W3C validator