Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relbrcoss Structured version   Visualization version   GIF version

Theorem relbrcoss 36564
Description: 𝐴 and 𝐵 are cosets by relation 𝑅: a binary relation. (Contributed by Peter Mazsa, 22-Apr-2021.)
Assertion
Ref Expression
relbrcoss ((𝐴𝑉𝐵𝑊) → (Rel 𝑅 → (𝐴𝑅𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉   𝑥,𝑊

Proof of Theorem relbrcoss
StepHypRef Expression
1 resdm 5936 . . . . . 6 (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅)
21cosseqd 36551 . . . . 5 (Rel 𝑅 → ≀ (𝑅 ↾ dom 𝑅) = ≀ 𝑅)
32breqd 5085 . . . 4 (Rel 𝑅 → (𝐴 ≀ (𝑅 ↾ dom 𝑅)𝐵𝐴𝑅𝐵))
43adantl 482 . . 3 (((𝐴𝑉𝐵𝑊) ∧ Rel 𝑅) → (𝐴 ≀ (𝑅 ↾ dom 𝑅)𝐵𝐴𝑅𝐵))
5 br1cossres2 36563 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐴 ≀ (𝑅 ↾ dom 𝑅)𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅)))
65adantr 481 . . 3 (((𝐴𝑉𝐵𝑊) ∧ Rel 𝑅) → (𝐴 ≀ (𝑅 ↾ dom 𝑅)𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅)))
74, 6bitr3d 280 . 2 (((𝐴𝑉𝐵𝑊) ∧ Rel 𝑅) → (𝐴𝑅𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅)))
87ex 413 1 ((𝐴𝑉𝐵𝑊) → (Rel 𝑅 → (𝐴𝑅𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wrex 3065   class class class wbr 5074  dom cdm 5589  cres 5591  Rel wrel 5594  [cec 8496  ccoss 36333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ec 8500  df-coss 36537
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator