Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relbrcoss Structured version   Visualization version   GIF version

Theorem relbrcoss 37619
Description: 𝐴 and 𝐵 are cosets by relation 𝑅: a binary relation. (Contributed by Peter Mazsa, 22-Apr-2021.)
Assertion
Ref Expression
relbrcoss ((𝐴𝑉𝐵𝑊) → (Rel 𝑅 → (𝐴𝑅𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉   𝑥,𝑊

Proof of Theorem relbrcoss
StepHypRef Expression
1 resdm 6026 . . . . . 6 (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅)
21cosseqd 37601 . . . . 5 (Rel 𝑅 → ≀ (𝑅 ↾ dom 𝑅) = ≀ 𝑅)
32breqd 5159 . . . 4 (Rel 𝑅 → (𝐴 ≀ (𝑅 ↾ dom 𝑅)𝐵𝐴𝑅𝐵))
43adantl 482 . . 3 (((𝐴𝑉𝐵𝑊) ∧ Rel 𝑅) → (𝐴 ≀ (𝑅 ↾ dom 𝑅)𝐵𝐴𝑅𝐵))
5 br1cossres2 37613 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐴 ≀ (𝑅 ↾ dom 𝑅)𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅)))
65adantr 481 . . 3 (((𝐴𝑉𝐵𝑊) ∧ Rel 𝑅) → (𝐴 ≀ (𝑅 ↾ dom 𝑅)𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅)))
74, 6bitr3d 280 . 2 (((𝐴𝑉𝐵𝑊) ∧ Rel 𝑅) → (𝐴𝑅𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅)))
87ex 413 1 ((𝐴𝑉𝐵𝑊) → (Rel 𝑅 → (𝐴𝑅𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wrex 3070   class class class wbr 5148  dom cdm 5676  cres 5678  Rel wrel 5681  [cec 8703  ccoss 37346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ec 8707  df-coss 37584
This theorem is referenced by:  disjlem18  37973
  Copyright terms: Public domain W3C validator