Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ispcmp | Structured version Visualization version GIF version |
Description: The predicate "is a paracompact topology". (Contributed by Thierry Arnoux, 7-Jan-2020.) |
Ref | Expression |
---|---|
ispcmp | ⊢ (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3450 | . 2 ⊢ (𝐽 ∈ Paracomp → 𝐽 ∈ V) | |
2 | elex 3450 | . 2 ⊢ (𝐽 ∈ CovHasRef(LocFin‘𝐽) → 𝐽 ∈ V) | |
3 | id 22 | . . . 4 ⊢ (𝑗 = 𝐽 → 𝑗 = 𝐽) | |
4 | fveq2 6774 | . . . . 5 ⊢ (𝑗 = 𝐽 → (LocFin‘𝑗) = (LocFin‘𝐽)) | |
5 | crefeq 31795 | . . . . 5 ⊢ ((LocFin‘𝑗) = (LocFin‘𝐽) → CovHasRef(LocFin‘𝑗) = CovHasRef(LocFin‘𝐽)) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝑗 = 𝐽 → CovHasRef(LocFin‘𝑗) = CovHasRef(LocFin‘𝐽)) |
7 | 3, 6 | eleq12d 2833 | . . 3 ⊢ (𝑗 = 𝐽 → (𝑗 ∈ CovHasRef(LocFin‘𝑗) ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽))) |
8 | df-pcmp 31806 | . . 3 ⊢ Paracomp = {𝑗 ∣ 𝑗 ∈ CovHasRef(LocFin‘𝑗)} | |
9 | 7, 8 | elab2g 3611 | . 2 ⊢ (𝐽 ∈ V → (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽))) |
10 | 1, 2, 9 | pm5.21nii 380 | 1 ⊢ (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ‘cfv 6433 LocFinclocfin 22655 CovHasRefccref 31792 Paracompcpcmp 31805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-cref 31793 df-pcmp 31806 |
This theorem is referenced by: cmppcmp 31808 dispcmp 31809 pcmplfin 31810 |
Copyright terms: Public domain | W3C validator |