![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ispcmp | Structured version Visualization version GIF version |
Description: The predicate "is a paracompact topology". (Contributed by Thierry Arnoux, 7-Jan-2020.) |
Ref | Expression |
---|---|
ispcmp | ⊢ (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3509 | . 2 ⊢ (𝐽 ∈ Paracomp → 𝐽 ∈ V) | |
2 | elex 3509 | . 2 ⊢ (𝐽 ∈ CovHasRef(LocFin‘𝐽) → 𝐽 ∈ V) | |
3 | id 22 | . . . 4 ⊢ (𝑗 = 𝐽 → 𝑗 = 𝐽) | |
4 | fveq2 6915 | . . . . 5 ⊢ (𝑗 = 𝐽 → (LocFin‘𝑗) = (LocFin‘𝐽)) | |
5 | crefeq 33783 | . . . . 5 ⊢ ((LocFin‘𝑗) = (LocFin‘𝐽) → CovHasRef(LocFin‘𝑗) = CovHasRef(LocFin‘𝐽)) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝑗 = 𝐽 → CovHasRef(LocFin‘𝑗) = CovHasRef(LocFin‘𝐽)) |
7 | 3, 6 | eleq12d 2838 | . . 3 ⊢ (𝑗 = 𝐽 → (𝑗 ∈ CovHasRef(LocFin‘𝑗) ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽))) |
8 | df-pcmp 33794 | . . 3 ⊢ Paracomp = {𝑗 ∣ 𝑗 ∈ CovHasRef(LocFin‘𝑗)} | |
9 | 7, 8 | elab2g 3696 | . 2 ⊢ (𝐽 ∈ V → (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽))) |
10 | 1, 2, 9 | pm5.21nii 378 | 1 ⊢ (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ‘cfv 6568 LocFinclocfin 23525 CovHasRefccref 33780 Paracompcpcmp 33793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6520 df-fv 6576 df-cref 33781 df-pcmp 33794 |
This theorem is referenced by: cmppcmp 33796 dispcmp 33797 pcmplfin 33798 |
Copyright terms: Public domain | W3C validator |