| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ispcmp | Structured version Visualization version GIF version | ||
| Description: The predicate "is a paracompact topology". (Contributed by Thierry Arnoux, 7-Jan-2020.) |
| Ref | Expression |
|---|---|
| ispcmp | ⊢ (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3468 | . 2 ⊢ (𝐽 ∈ Paracomp → 𝐽 ∈ V) | |
| 2 | elex 3468 | . 2 ⊢ (𝐽 ∈ CovHasRef(LocFin‘𝐽) → 𝐽 ∈ V) | |
| 3 | id 22 | . . . 4 ⊢ (𝑗 = 𝐽 → 𝑗 = 𝐽) | |
| 4 | fveq2 6858 | . . . . 5 ⊢ (𝑗 = 𝐽 → (LocFin‘𝑗) = (LocFin‘𝐽)) | |
| 5 | crefeq 33835 | . . . . 5 ⊢ ((LocFin‘𝑗) = (LocFin‘𝐽) → CovHasRef(LocFin‘𝑗) = CovHasRef(LocFin‘𝐽)) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝑗 = 𝐽 → CovHasRef(LocFin‘𝑗) = CovHasRef(LocFin‘𝐽)) |
| 7 | 3, 6 | eleq12d 2822 | . . 3 ⊢ (𝑗 = 𝐽 → (𝑗 ∈ CovHasRef(LocFin‘𝑗) ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽))) |
| 8 | df-pcmp 33846 | . . 3 ⊢ Paracomp = {𝑗 ∣ 𝑗 ∈ CovHasRef(LocFin‘𝑗)} | |
| 9 | 7, 8 | elab2g 3647 | . 2 ⊢ (𝐽 ∈ V → (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽))) |
| 10 | 1, 2, 9 | pm5.21nii 378 | 1 ⊢ (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ‘cfv 6511 LocFinclocfin 23391 CovHasRefccref 33832 Paracompcpcmp 33845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-cref 33833 df-pcmp 33846 |
| This theorem is referenced by: cmppcmp 33848 dispcmp 33849 pcmplfin 33850 |
| Copyright terms: Public domain | W3C validator |