![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ispcmp | Structured version Visualization version GIF version |
Description: The predicate "is a paracompact topology". (Contributed by Thierry Arnoux, 7-Jan-2020.) |
Ref | Expression |
---|---|
ispcmp | β’ (π½ β Paracomp β π½ β CovHasRef(LocFinβπ½)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3487 | . 2 β’ (π½ β Paracomp β π½ β V) | |
2 | elex 3487 | . 2 β’ (π½ β CovHasRef(LocFinβπ½) β π½ β V) | |
3 | id 22 | . . . 4 β’ (π = π½ β π = π½) | |
4 | fveq2 6884 | . . . . 5 β’ (π = π½ β (LocFinβπ) = (LocFinβπ½)) | |
5 | crefeq 33355 | . . . . 5 β’ ((LocFinβπ) = (LocFinβπ½) β CovHasRef(LocFinβπ) = CovHasRef(LocFinβπ½)) | |
6 | 4, 5 | syl 17 | . . . 4 β’ (π = π½ β CovHasRef(LocFinβπ) = CovHasRef(LocFinβπ½)) |
7 | 3, 6 | eleq12d 2821 | . . 3 β’ (π = π½ β (π β CovHasRef(LocFinβπ) β π½ β CovHasRef(LocFinβπ½))) |
8 | df-pcmp 33366 | . . 3 β’ Paracomp = {π β£ π β CovHasRef(LocFinβπ)} | |
9 | 7, 8 | elab2g 3665 | . 2 β’ (π½ β V β (π½ β Paracomp β π½ β CovHasRef(LocFinβπ½))) |
10 | 1, 2, 9 | pm5.21nii 378 | 1 β’ (π½ β Paracomp β π½ β CovHasRef(LocFinβπ½)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 = wceq 1533 β wcel 2098 Vcvv 3468 βcfv 6536 LocFinclocfin 23359 CovHasRefccref 33352 Paracompcpcmp 33365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-iota 6488 df-fv 6544 df-cref 33353 df-pcmp 33366 |
This theorem is referenced by: cmppcmp 33368 dispcmp 33369 pcmplfin 33370 |
Copyright terms: Public domain | W3C validator |