Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispcmp Structured version   Visualization version   GIF version

Theorem ispcmp 31807
Description: The predicate "is a paracompact topology". (Contributed by Thierry Arnoux, 7-Jan-2020.)
Assertion
Ref Expression
ispcmp (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽))

Proof of Theorem ispcmp
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 elex 3450 . 2 (𝐽 ∈ Paracomp → 𝐽 ∈ V)
2 elex 3450 . 2 (𝐽 ∈ CovHasRef(LocFin‘𝐽) → 𝐽 ∈ V)
3 id 22 . . . 4 (𝑗 = 𝐽𝑗 = 𝐽)
4 fveq2 6774 . . . . 5 (𝑗 = 𝐽 → (LocFin‘𝑗) = (LocFin‘𝐽))
5 crefeq 31795 . . . . 5 ((LocFin‘𝑗) = (LocFin‘𝐽) → CovHasRef(LocFin‘𝑗) = CovHasRef(LocFin‘𝐽))
64, 5syl 17 . . . 4 (𝑗 = 𝐽 → CovHasRef(LocFin‘𝑗) = CovHasRef(LocFin‘𝐽))
73, 6eleq12d 2833 . . 3 (𝑗 = 𝐽 → (𝑗 ∈ CovHasRef(LocFin‘𝑗) ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽)))
8 df-pcmp 31806 . . 3 Paracomp = {𝑗𝑗 ∈ CovHasRef(LocFin‘𝑗)}
97, 8elab2g 3611 . 2 (𝐽 ∈ V → (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽)))
101, 2, 9pm5.21nii 380 1 (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2106  Vcvv 3432  cfv 6433  LocFinclocfin 22655  CovHasRefccref 31792  Paracompcpcmp 31805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-cref 31793  df-pcmp 31806
This theorem is referenced by:  cmppcmp  31808  dispcmp  31809  pcmplfin  31810
  Copyright terms: Public domain W3C validator