Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispcmp Structured version   Visualization version   GIF version

Theorem ispcmp 33367
Description: The predicate "is a paracompact topology". (Contributed by Thierry Arnoux, 7-Jan-2020.)
Assertion
Ref Expression
ispcmp (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFinβ€˜π½))

Proof of Theorem ispcmp
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 elex 3487 . 2 (𝐽 ∈ Paracomp β†’ 𝐽 ∈ V)
2 elex 3487 . 2 (𝐽 ∈ CovHasRef(LocFinβ€˜π½) β†’ 𝐽 ∈ V)
3 id 22 . . . 4 (𝑗 = 𝐽 β†’ 𝑗 = 𝐽)
4 fveq2 6884 . . . . 5 (𝑗 = 𝐽 β†’ (LocFinβ€˜π‘—) = (LocFinβ€˜π½))
5 crefeq 33355 . . . . 5 ((LocFinβ€˜π‘—) = (LocFinβ€˜π½) β†’ CovHasRef(LocFinβ€˜π‘—) = CovHasRef(LocFinβ€˜π½))
64, 5syl 17 . . . 4 (𝑗 = 𝐽 β†’ CovHasRef(LocFinβ€˜π‘—) = CovHasRef(LocFinβ€˜π½))
73, 6eleq12d 2821 . . 3 (𝑗 = 𝐽 β†’ (𝑗 ∈ CovHasRef(LocFinβ€˜π‘—) ↔ 𝐽 ∈ CovHasRef(LocFinβ€˜π½)))
8 df-pcmp 33366 . . 3 Paracomp = {𝑗 ∣ 𝑗 ∈ CovHasRef(LocFinβ€˜π‘—)}
97, 8elab2g 3665 . 2 (𝐽 ∈ V β†’ (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFinβ€˜π½)))
101, 2, 9pm5.21nii 378 1 (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFinβ€˜π½))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   = wceq 1533   ∈ wcel 2098  Vcvv 3468  β€˜cfv 6536  LocFinclocfin 23359  CovHasRefccref 33352  Paracompcpcmp 33365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-iota 6488  df-fv 6544  df-cref 33353  df-pcmp 33366
This theorem is referenced by:  cmppcmp  33368  dispcmp  33369  pcmplfin  33370
  Copyright terms: Public domain W3C validator