| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ispcmp | Structured version Visualization version GIF version | ||
| Description: The predicate "is a paracompact topology". (Contributed by Thierry Arnoux, 7-Jan-2020.) |
| Ref | Expression |
|---|---|
| ispcmp | ⊢ (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3484 | . 2 ⊢ (𝐽 ∈ Paracomp → 𝐽 ∈ V) | |
| 2 | elex 3484 | . 2 ⊢ (𝐽 ∈ CovHasRef(LocFin‘𝐽) → 𝐽 ∈ V) | |
| 3 | id 22 | . . . 4 ⊢ (𝑗 = 𝐽 → 𝑗 = 𝐽) | |
| 4 | fveq2 6886 | . . . . 5 ⊢ (𝑗 = 𝐽 → (LocFin‘𝑗) = (LocFin‘𝐽)) | |
| 5 | crefeq 33819 | . . . . 5 ⊢ ((LocFin‘𝑗) = (LocFin‘𝐽) → CovHasRef(LocFin‘𝑗) = CovHasRef(LocFin‘𝐽)) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝑗 = 𝐽 → CovHasRef(LocFin‘𝑗) = CovHasRef(LocFin‘𝐽)) |
| 7 | 3, 6 | eleq12d 2827 | . . 3 ⊢ (𝑗 = 𝐽 → (𝑗 ∈ CovHasRef(LocFin‘𝑗) ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽))) |
| 8 | df-pcmp 33830 | . . 3 ⊢ Paracomp = {𝑗 ∣ 𝑗 ∈ CovHasRef(LocFin‘𝑗)} | |
| 9 | 7, 8 | elab2g 3663 | . 2 ⊢ (𝐽 ∈ V → (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽))) |
| 10 | 1, 2, 9 | pm5.21nii 378 | 1 ⊢ (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ‘cfv 6541 LocFinclocfin 23459 CovHasRefccref 33816 Paracompcpcmp 33829 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-cref 33817 df-pcmp 33830 |
| This theorem is referenced by: cmppcmp 33832 dispcmp 33833 pcmplfin 33834 |
| Copyright terms: Public domain | W3C validator |