Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispcmp Structured version   Visualization version   GIF version

Theorem ispcmp 33831
Description: The predicate "is a paracompact topology". (Contributed by Thierry Arnoux, 7-Jan-2020.)
Assertion
Ref Expression
ispcmp (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽))

Proof of Theorem ispcmp
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 elex 3484 . 2 (𝐽 ∈ Paracomp → 𝐽 ∈ V)
2 elex 3484 . 2 (𝐽 ∈ CovHasRef(LocFin‘𝐽) → 𝐽 ∈ V)
3 id 22 . . . 4 (𝑗 = 𝐽𝑗 = 𝐽)
4 fveq2 6886 . . . . 5 (𝑗 = 𝐽 → (LocFin‘𝑗) = (LocFin‘𝐽))
5 crefeq 33819 . . . . 5 ((LocFin‘𝑗) = (LocFin‘𝐽) → CovHasRef(LocFin‘𝑗) = CovHasRef(LocFin‘𝐽))
64, 5syl 17 . . . 4 (𝑗 = 𝐽 → CovHasRef(LocFin‘𝑗) = CovHasRef(LocFin‘𝐽))
73, 6eleq12d 2827 . . 3 (𝑗 = 𝐽 → (𝑗 ∈ CovHasRef(LocFin‘𝑗) ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽)))
8 df-pcmp 33830 . . 3 Paracomp = {𝑗𝑗 ∈ CovHasRef(LocFin‘𝑗)}
97, 8elab2g 3663 . 2 (𝐽 ∈ V → (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽)))
101, 2, 9pm5.21nii 378 1 (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1539  wcel 2107  Vcvv 3463  cfv 6541  LocFinclocfin 23459  CovHasRefccref 33816  Paracompcpcmp 33829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-iota 6494  df-fv 6549  df-cref 33817  df-pcmp 33830
This theorem is referenced by:  cmppcmp  33832  dispcmp  33833  pcmplfin  33834
  Copyright terms: Public domain W3C validator