Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispcmp Structured version   Visualization version   GIF version

Theorem ispcmp 33865
Description: The predicate "is a paracompact topology". (Contributed by Thierry Arnoux, 7-Jan-2020.)
Assertion
Ref Expression
ispcmp (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽))

Proof of Theorem ispcmp
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 elex 3457 . 2 (𝐽 ∈ Paracomp → 𝐽 ∈ V)
2 elex 3457 . 2 (𝐽 ∈ CovHasRef(LocFin‘𝐽) → 𝐽 ∈ V)
3 id 22 . . . 4 (𝑗 = 𝐽𝑗 = 𝐽)
4 fveq2 6822 . . . . 5 (𝑗 = 𝐽 → (LocFin‘𝑗) = (LocFin‘𝐽))
5 crefeq 33853 . . . . 5 ((LocFin‘𝑗) = (LocFin‘𝐽) → CovHasRef(LocFin‘𝑗) = CovHasRef(LocFin‘𝐽))
64, 5syl 17 . . . 4 (𝑗 = 𝐽 → CovHasRef(LocFin‘𝑗) = CovHasRef(LocFin‘𝐽))
73, 6eleq12d 2825 . . 3 (𝑗 = 𝐽 → (𝑗 ∈ CovHasRef(LocFin‘𝑗) ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽)))
8 df-pcmp 33864 . . 3 Paracomp = {𝑗𝑗 ∈ CovHasRef(LocFin‘𝑗)}
97, 8elab2g 3636 . 2 (𝐽 ∈ V → (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽)))
101, 2, 9pm5.21nii 378 1 (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2111  Vcvv 3436  cfv 6481  LocFinclocfin 23417  CovHasRefccref 33850  Paracompcpcmp 33863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-cref 33851  df-pcmp 33864
This theorem is referenced by:  cmppcmp  33866  dispcmp  33867  pcmplfin  33868
  Copyright terms: Public domain W3C validator