Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispcmp Structured version   Visualization version   GIF version

Theorem ispcmp 33823
Description: The predicate "is a paracompact topology". (Contributed by Thierry Arnoux, 7-Jan-2020.)
Assertion
Ref Expression
ispcmp (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽))

Proof of Theorem ispcmp
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 elex 3459 . 2 (𝐽 ∈ Paracomp → 𝐽 ∈ V)
2 elex 3459 . 2 (𝐽 ∈ CovHasRef(LocFin‘𝐽) → 𝐽 ∈ V)
3 id 22 . . . 4 (𝑗 = 𝐽𝑗 = 𝐽)
4 fveq2 6826 . . . . 5 (𝑗 = 𝐽 → (LocFin‘𝑗) = (LocFin‘𝐽))
5 crefeq 33811 . . . . 5 ((LocFin‘𝑗) = (LocFin‘𝐽) → CovHasRef(LocFin‘𝑗) = CovHasRef(LocFin‘𝐽))
64, 5syl 17 . . . 4 (𝑗 = 𝐽 → CovHasRef(LocFin‘𝑗) = CovHasRef(LocFin‘𝐽))
73, 6eleq12d 2822 . . 3 (𝑗 = 𝐽 → (𝑗 ∈ CovHasRef(LocFin‘𝑗) ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽)))
8 df-pcmp 33822 . . 3 Paracomp = {𝑗𝑗 ∈ CovHasRef(LocFin‘𝑗)}
97, 8elab2g 3638 . 2 (𝐽 ∈ V → (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽)))
101, 2, 9pm5.21nii 378 1 (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  Vcvv 3438  cfv 6486  LocFinclocfin 23407  CovHasRefccref 33808  Paracompcpcmp 33821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-cref 33809  df-pcmp 33822
This theorem is referenced by:  cmppcmp  33824  dispcmp  33825  pcmplfin  33826
  Copyright terms: Public domain W3C validator