![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > creftop | Structured version Visualization version GIF version |
Description: A space where every open cover has an 𝐴 refinement is a topological space. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
Ref | Expression |
---|---|
creftop | ⊢ (𝐽 ∈ CovHasRef𝐴 → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | iscref 33659 | . 2 ⊢ (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦))) |
3 | 2 | simplbi 496 | 1 ⊢ (𝐽 ∈ CovHasRef𝐴 → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ∃wrex 3060 ∩ cin 3946 𝒫 cpw 4607 ∪ cuni 4913 class class class wbr 5153 Topctop 22886 Refcref 23497 CovHasRefccref 33657 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-in 3954 df-ss 3964 df-pw 4609 df-uni 4914 df-cref 33658 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |