| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > creftop | Structured version Visualization version GIF version | ||
| Description: A space where every open cover has an 𝐴 refinement is a topological space. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
| Ref | Expression |
|---|---|
| creftop | ⊢ (𝐽 ∈ CovHasRef𝐴 → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | iscref 33834 | . 2 ⊢ (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦))) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ CovHasRef𝐴 → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∩ cin 3913 𝒫 cpw 4563 ∪ cuni 4871 class class class wbr 5107 Topctop 22780 Refcref 23389 CovHasRefccref 33832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-in 3921 df-ss 3931 df-pw 4565 df-uni 4872 df-cref 33833 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |