Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > creftop | Structured version Visualization version GIF version |
Description: A space where every open cover has an 𝐴 refinement is a topological space. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
Ref | Expression |
---|---|
creftop | ⊢ (𝐽 ∈ CovHasRef𝐴 → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | iscref 31379 | . 2 ⊢ (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦))) |
3 | 2 | simplbi 501 | 1 ⊢ (𝐽 ∈ CovHasRef𝐴 → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2114 ∀wral 3054 ∃wrex 3055 ∩ cin 3852 𝒫 cpw 4498 ∪ cuni 4806 class class class wbr 5040 Topctop 21657 Refcref 22266 CovHasRefccref 31377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2711 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3402 df-in 3860 df-ss 3870 df-pw 4500 df-uni 4807 df-cref 31378 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |