Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  creftop Structured version   Visualization version   GIF version

Theorem creftop 33661
Description: A space where every open cover has an 𝐴 refinement is a topological space. (Contributed by Thierry Arnoux, 7-Jan-2020.)
Assertion
Ref Expression
creftop (𝐽 ∈ CovHasRef𝐴𝐽 ∈ Top)

Proof of Theorem creftop
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2726 . . 3 𝐽 = 𝐽
21iscref 33659 . 2 (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦)))
32simplbi 496 1 (𝐽 ∈ CovHasRef𝐴𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  wral 3051  wrex 3060  cin 3946  𝒫 cpw 4607   cuni 4913   class class class wbr 5153  Topctop 22886  Refcref 23497  CovHasRefccref 33657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-in 3954  df-ss 3964  df-pw 4609  df-uni 4914  df-cref 33658
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator