Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  creftop Structured version   Visualization version   GIF version

Theorem creftop 33807
Description: A space where every open cover has an 𝐴 refinement is a topological space. (Contributed by Thierry Arnoux, 7-Jan-2020.)
Assertion
Ref Expression
creftop (𝐽 ∈ CovHasRef𝐴𝐽 ∈ Top)

Proof of Theorem creftop
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . 3 𝐽 = 𝐽
21iscref 33805 . 2 (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦)))
32simplbi 497 1 (𝐽 ∈ CovHasRef𝐴𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wral 3059  wrex 3068  cin 3962  𝒫 cpw 4605   cuni 4912   class class class wbr 5148  Topctop 22915  Refcref 23526  CovHasRefccref 33803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-in 3970  df-ss 3980  df-pw 4607  df-uni 4913  df-cref 33804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator