Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csb0OLD Structured version   Visualization version   GIF version

Theorem csb0OLD 4315
 Description: Obsolete version of csb0 4314 as of 28-Jun-2024. (Contributed by NM, 18-Aug-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csb0OLD 𝐴 / 𝑥∅ = ∅

Proof of Theorem csb0OLD
StepHypRef Expression
1 csbconstg 3847 . 2 (𝐴 ∈ V → 𝐴 / 𝑥∅ = ∅)
2 csbprc 4313 . 2 𝐴 ∈ V → 𝐴 / 𝑥∅ = ∅)
31, 2pm2.61i 185 1 𝐴 / 𝑥∅ = ∅
 Colors of variables: wff setvar class Syntax hints:   = wceq 1538   ∈ wcel 2111  Vcvv 3441  ⦋csb 3828  ∅c0 4243 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-12 2175  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-nul 4244 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator