MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csb0 Structured version   Visualization version   GIF version

Theorem csb0 4314
Description: The proper substitution of a class into the empty set is the empty set. (Contributed by NM, 18-Aug-2018.) Avoid ax-12 2175. (Revised by Gino Giotto, 28-Jun-2024.)
Assertion
Ref Expression
csb0 𝐴 / 𝑥∅ = ∅

Proof of Theorem csb0
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2955 . . 3 𝑥
2 df-csb 3829 . . . 4 𝐴 / 𝑥∅ = {𝑦[𝐴 / 𝑥]𝑦 ∈ ∅}
3 dfsbcq2 3723 . . . . . . . . 9 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝑦 ∈ ∅ ↔ [𝐴 / 𝑥]𝑦 ∈ ∅))
43bibi1d 347 . . . . . . . 8 (𝑧 = 𝐴 → (([𝑧 / 𝑥]𝑦 ∈ ∅ ↔ 𝑦 ∈ ∅) ↔ ([𝐴 / 𝑥]𝑦 ∈ ∅ ↔ 𝑦 ∈ ∅)))
54imbi2d 344 . . . . . . 7 (𝑧 = 𝐴 → ((Ⅎ𝑥 𝑦 ∈ ∅ → ([𝑧 / 𝑥]𝑦 ∈ ∅ ↔ 𝑦 ∈ ∅)) ↔ (Ⅎ𝑥 𝑦 ∈ ∅ → ([𝐴 / 𝑥]𝑦 ∈ ∅ ↔ 𝑦 ∈ ∅))))
6 sbv 2095 . . . . . . . 8 ([𝑧 / 𝑥]𝑦 ∈ ∅ ↔ 𝑦 ∈ ∅)
76a1i 11 . . . . . . 7 (Ⅎ𝑥 𝑦 ∈ ∅ → ([𝑧 / 𝑥]𝑦 ∈ ∅ ↔ 𝑦 ∈ ∅))
85, 7vtoclg 3515 . . . . . 6 (𝐴 ∈ V → (Ⅎ𝑥 𝑦 ∈ ∅ → ([𝐴 / 𝑥]𝑦 ∈ ∅ ↔ 𝑦 ∈ ∅)))
9 nfcr 2941 . . . . . 6 (𝑥∅ → Ⅎ𝑥 𝑦 ∈ ∅)
108, 9impel 509 . . . . 5 ((𝐴 ∈ V ∧ 𝑥∅) → ([𝐴 / 𝑥]𝑦 ∈ ∅ ↔ 𝑦 ∈ ∅))
1110abbi1dv 2928 . . . 4 ((𝐴 ∈ V ∧ 𝑥∅) → {𝑦[𝐴 / 𝑥]𝑦 ∈ ∅} = ∅)
122, 11syl5eq 2845 . . 3 ((𝐴 ∈ V ∧ 𝑥∅) → 𝐴 / 𝑥∅ = ∅)
131, 12mpan2 690 . 2 (𝐴 ∈ V → 𝐴 / 𝑥∅ = ∅)
14 csbprc 4313 . 2 𝐴 ∈ V → 𝐴 / 𝑥∅ = ∅)
1513, 14pm2.61i 185 1 𝐴 / 𝑥∅ = ∅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wnf 1785  [wsb 2069  wcel 2111  {cab 2776  wnfc 2936  Vcvv 3441  [wsbc 3720  csb 3828  c0 4243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-nul 4244
This theorem is referenced by:  disjdsct  30462  onfrALTlem5  41248  onfrALTlem4  41249  onfrALTlem5VD  41591  onfrALTlem4VD  41592
  Copyright terms: Public domain W3C validator