| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csb0 | Structured version Visualization version GIF version | ||
| Description: The proper substitution of a class into the empty set is the empty set. (Contributed by NM, 18-Aug-2018.) |
| Ref | Expression |
|---|---|
| csb0 | ⊢ ⦋𝐴 / 𝑥⦌∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbconstg 3865 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌∅ = ∅) | |
| 2 | csbprc 4358 | . 2 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌∅ = ∅) | |
| 3 | 1, 2 | pm2.61i 182 | 1 ⊢ ⦋𝐴 / 𝑥⦌∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⦋csb 3846 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-nul 4283 |
| This theorem is referenced by: disjdsct 32688 onfrALTlem5 44659 onfrALTlem4 44660 onfrALTlem5VD 45001 onfrALTlem4VD 45002 |
| Copyright terms: Public domain | W3C validator |