![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csb0 | Structured version Visualization version GIF version |
Description: The proper substitution of a class into the empty set is the empty set. (Contributed by NM, 18-Aug-2018.) |
Ref | Expression |
---|---|
csb0 | ⊢ ⦋𝐴 / 𝑥⦌∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbconstg 3940 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌∅ = ∅) | |
2 | csbprc 4432 | . 2 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌∅ = ∅) | |
3 | 1, 2 | pm2.61i 182 | 1 ⊢ ⦋𝐴 / 𝑥⦌∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⦋csb 3921 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-nul 4353 |
This theorem is referenced by: disjdsct 32714 onfrALTlem5 44513 onfrALTlem4 44514 onfrALTlem5VD 44856 onfrALTlem4VD 44857 |
Copyright terms: Public domain | W3C validator |