MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csb0 Structured version   Visualization version   GIF version

Theorem csb0 4433
Description: The proper substitution of a class into the empty set is the empty set. (Contributed by NM, 18-Aug-2018.)
Assertion
Ref Expression
csb0 𝐴 / 𝑥∅ = ∅

Proof of Theorem csb0
StepHypRef Expression
1 csbconstg 3940 . 2 (𝐴 ∈ V → 𝐴 / 𝑥∅ = ∅)
2 csbprc 4432 . 2 𝐴 ∈ V → 𝐴 / 𝑥∅ = ∅)
31, 2pm2.61i 182 1 𝐴 / 𝑥∅ = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  Vcvv 3488  csb 3921  c0 4352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-nul 4353
This theorem is referenced by:  disjdsct  32714  onfrALTlem5  44513  onfrALTlem4  44514  onfrALTlem5VD  44856  onfrALTlem4VD  44857
  Copyright terms: Public domain W3C validator