| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csb0 | Structured version Visualization version GIF version | ||
| Description: The proper substitution of a class into the empty set is the empty set. (Contributed by NM, 18-Aug-2018.) |
| Ref | Expression |
|---|---|
| csb0 | ⊢ ⦋𝐴 / 𝑥⦌∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbconstg 3898 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌∅ = ∅) | |
| 2 | csbprc 4389 | . 2 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌∅ = ∅) | |
| 3 | 1, 2 | pm2.61i 182 | 1 ⊢ ⦋𝐴 / 𝑥⦌∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3464 ⦋csb 3879 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-nul 4314 |
| This theorem is referenced by: disjdsct 32685 onfrALTlem5 44534 onfrALTlem4 44535 onfrALTlem5VD 44876 onfrALTlem4VD 44877 |
| Copyright terms: Public domain | W3C validator |