MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csb0 Structured version   Visualization version   GIF version

Theorem csb0 4403
Description: The proper substitution of a class into the empty set is the empty set. (Contributed by NM, 18-Aug-2018.)
Assertion
Ref Expression
csb0 𝐴 / 𝑥∅ = ∅

Proof of Theorem csb0
StepHypRef Expression
1 csbconstg 3908 . 2 (𝐴 ∈ V → 𝐴 / 𝑥∅ = ∅)
2 csbprc 4402 . 2 𝐴 ∈ V → 𝐴 / 𝑥∅ = ∅)
31, 2pm2.61i 182 1 𝐴 / 𝑥∅ = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  Vcvv 3469  csb 3889  c0 4318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-nul 4319
This theorem is referenced by:  disjdsct  32466  onfrALTlem5  43904  onfrALTlem4  43905  onfrALTlem5VD  44247  onfrALTlem4VD  44248
  Copyright terms: Public domain W3C validator