MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csb0 Structured version   Visualization version   GIF version

Theorem csb0 4390
Description: The proper substitution of a class into the empty set is the empty set. (Contributed by NM, 18-Aug-2018.)
Assertion
Ref Expression
csb0 𝐴 / 𝑥∅ = ∅

Proof of Theorem csb0
StepHypRef Expression
1 csbconstg 3898 . 2 (𝐴 ∈ V → 𝐴 / 𝑥∅ = ∅)
2 csbprc 4389 . 2 𝐴 ∈ V → 𝐴 / 𝑥∅ = ∅)
31, 2pm2.61i 182 1 𝐴 / 𝑥∅ = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3464  csb 3879  c0 4313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-nul 4314
This theorem is referenced by:  disjdsct  32685  onfrALTlem5  44534  onfrALTlem4  44535  onfrALTlem5VD  44876  onfrALTlem4VD  44877
  Copyright terms: Public domain W3C validator