MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbieOLD Structured version   Visualization version   GIF version

Theorem csbieOLD 3930
Description: Obsolete version of csbie 3929 as of 15-Oct-2024. (Contributed by AV, 2-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
csbieOLD.1 𝐴 ∈ V
csbieOLD.2 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
csbieOLD 𝐴 / 𝑥𝐵 = 𝐶
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem csbieOLD
StepHypRef Expression
1 csbieOLD.1 . 2 𝐴 ∈ V
2 nfcv 2903 . 2 𝑥𝐶
3 csbieOLD.2 . 2 (𝑥 = 𝐴𝐵 = 𝐶)
41, 2, 3csbief 3928 1 𝐴 / 𝑥𝐵 = 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  Vcvv 3474  csb 3893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-v 3476  df-sbc 3778  df-csb 3894
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator