MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbieOLD Structured version   Visualization version   GIF version

Theorem csbieOLD 3865
Description: Obsolete version of csbie 3864 as of 15-Oct-2024. (Contributed by AV, 2-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
csbieOLD.1 𝐴 ∈ V
csbieOLD.2 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
csbieOLD 𝐴 / 𝑥𝐵 = 𝐶
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem csbieOLD
StepHypRef Expression
1 csbieOLD.1 . 2 𝐴 ∈ V
2 nfcv 2906 . 2 𝑥𝐶
3 csbieOLD.2 . 2 (𝑥 = 𝐴𝐵 = 𝐶)
41, 2, 3csbief 3863 1 𝐴 / 𝑥𝐵 = 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  csb 3828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-v 3424  df-sbc 3712  df-csb 3829
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator