MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbieOLD Structured version   Visualization version   GIF version

Theorem csbieOLD 3869
Description: Obsolete version of csbie 3868 as of 15-Oct-2024. (Contributed by AV, 2-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
csbieOLD.1 𝐴 ∈ V
csbieOLD.2 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
csbieOLD 𝐴 / 𝑥𝐵 = 𝐶
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem csbieOLD
StepHypRef Expression
1 csbieOLD.1 . 2 𝐴 ∈ V
2 nfcv 2907 . 2 𝑥𝐶
3 csbieOLD.2 . 2 (𝑥 = 𝐴𝐵 = 𝐶)
41, 2, 3csbief 3867 1 𝐴 / 𝑥𝐵 = 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  csb 3832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-v 3434  df-sbc 3717  df-csb 3833
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator