![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbieOLD | Structured version Visualization version GIF version |
Description: Obsolete version of csbie 3957 as of 15-Oct-2024. (Contributed by AV, 2-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
csbieOLD.1 | ⊢ 𝐴 ∈ V |
csbieOLD.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbieOLD | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbieOLD.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | nfcv 2908 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | csbieOLD.2 | . 2 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
4 | 1, 2, 3 | csbief 3956 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⦋csb 3921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-v 3490 df-sbc 3805 df-csb 3922 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |