Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbieOLD | Structured version Visualization version GIF version |
Description: Obsolete version of csbie 3879 as of 15-Oct-2024. (Contributed by AV, 2-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
csbieOLD.1 | ⊢ 𝐴 ∈ V |
csbieOLD.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbieOLD | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbieOLD.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | nfcv 2904 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | csbieOLD.2 | . 2 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
4 | 1, 2, 3 | csbief 3878 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ⦋csb 3843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-v 3443 df-sbc 3728 df-csb 3844 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |