MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbieOLD Structured version   Visualization version   GIF version

Theorem csbieOLD 3958
Description: Obsolete version of csbie 3957 as of 15-Oct-2024. (Contributed by AV, 2-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
csbieOLD.1 𝐴 ∈ V
csbieOLD.2 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
csbieOLD 𝐴 / 𝑥𝐵 = 𝐶
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem csbieOLD
StepHypRef Expression
1 csbieOLD.1 . 2 𝐴 ∈ V
2 nfcv 2908 . 2 𝑥𝐶
3 csbieOLD.2 . 2 (𝑥 = 𝐴𝐵 = 𝐶)
41, 2, 3csbief 3956 1 𝐴 / 𝑥𝐵 = 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  csb 3921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-v 3490  df-sbc 3805  df-csb 3922
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator