MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbief Structured version   Visualization version   GIF version

Theorem csbief 3881
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbief.1 𝐴 ∈ V
csbief.2 𝑥𝐶
csbief.3 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
csbief 𝐴 / 𝑥𝐵 = 𝐶
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem csbief
StepHypRef Expression
1 csbief.1 . 2 𝐴 ∈ V
2 csbief.2 . . . 4 𝑥𝐶
32a1i 11 . . 3 (𝐴 ∈ V → 𝑥𝐶)
4 csbief.3 . . 3 (𝑥 = 𝐴𝐵 = 𝐶)
53, 4csbiegf 3880 . 2 (𝐴 ∈ V → 𝐴 / 𝑥𝐵 = 𝐶)
61, 5ax-mp 5 1 𝐴 / 𝑥𝐵 = 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wnfc 2881  Vcvv 3438  csb 3847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-v 3440  df-sbc 3739  df-csb 3848
This theorem is referenced by:  cbvrabcsfw  3888  csbun  4392  csbin  4393  csbdif  4475  csbif  4534  csbopab  5500  csbopabgALT  5501  csbima12  6035  csbcog  6252  csbiota  6482  csbriota  7327  csbov123  7399  pcmpt  16814  mpfrcl  22030  iundisj2  25487  iundisj2f  32581  iundisj2fi  32790  csbafv12g  47251  csbaovg  47294  csbafv212g  47333
  Copyright terms: Public domain W3C validator