![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbief | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
csbief.1 | ⊢ 𝐴 ∈ V |
csbief.2 | ⊢ Ⅎ𝑥𝐶 |
csbief.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbief | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbief.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | csbief.2 | . . . 4 ⊢ Ⅎ𝑥𝐶 | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝐴 ∈ V → Ⅎ𝑥𝐶) |
4 | csbief.3 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
5 | 3, 4 | csbiegf 3928 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
6 | 1, 5 | ax-mp 5 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 Ⅎwnfc 2884 Vcvv 3475 ⦋csb 3894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-v 3477 df-sbc 3779 df-csb 3895 |
This theorem is referenced by: csbieOLD 3931 cbvrabcsfw 3938 csbun 4439 csbin 4440 csbdif 4528 csbif 4586 csbopab 5556 csbopabgALT 5557 csbima12 6079 csbcog 6297 csbiota 6537 csbriota 7381 csbov123 7451 pcmpt 16825 mpfrcl 21648 iundisj2 25066 iundisj2f 31821 iundisj2fi 32008 csbafv12g 45845 csbaovg 45888 csbafv212g 45927 |
Copyright terms: Public domain | W3C validator |