| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbief | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| csbief.1 | ⊢ 𝐴 ∈ V |
| csbief.2 | ⊢ Ⅎ𝑥𝐶 |
| csbief.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| csbief | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbief.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | csbief.2 | . . . 4 ⊢ Ⅎ𝑥𝐶 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝐴 ∈ V → Ⅎ𝑥𝐶) |
| 4 | csbief.3 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 5 | 3, 4 | csbiegf 3912 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| 6 | 1, 5 | ax-mp 5 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2884 Vcvv 3464 ⦋csb 3879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-v 3466 df-sbc 3771 df-csb 3880 |
| This theorem is referenced by: cbvrabcsfw 3920 csbun 4421 csbin 4422 csbdif 4504 csbif 4563 csbopab 5535 csbopabgALT 5536 csbima12 6071 csbcog 6291 csbiota 6529 csbriota 7382 csbov123 7454 pcmpt 16917 mpfrcl 22048 iundisj2 25507 iundisj2f 32576 iundisj2fi 32779 csbafv12g 47133 csbaovg 47176 csbafv212g 47215 |
| Copyright terms: Public domain | W3C validator |