Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbief | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
csbief.1 | ⊢ 𝐴 ∈ V |
csbief.2 | ⊢ Ⅎ𝑥𝐶 |
csbief.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbief | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbief.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | csbief.2 | . . . 4 ⊢ Ⅎ𝑥𝐶 | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝐴 ∈ V → Ⅎ𝑥𝐶) |
4 | csbief.3 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
5 | 3, 4 | csbiegf 3862 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
6 | 1, 5 | ax-mp 5 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Ⅎwnfc 2886 Vcvv 3422 ⦋csb 3828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-v 3424 df-sbc 3712 df-csb 3829 |
This theorem is referenced by: csbieOLD 3865 cbvrabcsfw 3872 csbun 4369 csbin 4370 csbdif 4455 csbif 4513 csbopab 5461 csbopabgALT 5462 csbima12 5976 csbcog 6189 csbiota 6411 csbriota 7228 csbov123 7297 pcmpt 16521 mpfrcl 21205 iundisj2 24618 iundisj2f 30830 iundisj2fi 31020 csbafv12g 44516 csbaovg 44559 csbafv212g 44598 |
Copyright terms: Public domain | W3C validator |