| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbief | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| csbief.1 | ⊢ 𝐴 ∈ V |
| csbief.2 | ⊢ Ⅎ𝑥𝐶 |
| csbief.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| csbief | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbief.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | csbief.2 | . . . 4 ⊢ Ⅎ𝑥𝐶 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝐴 ∈ V → Ⅎ𝑥𝐶) |
| 4 | csbief.3 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 5 | 3, 4 | csbiegf 3895 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| 6 | 1, 5 | ax-mp 5 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2876 Vcvv 3447 ⦋csb 3862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-v 3449 df-sbc 3754 df-csb 3863 |
| This theorem is referenced by: cbvrabcsfw 3903 csbun 4404 csbin 4405 csbdif 4487 csbif 4546 csbopab 5515 csbopabgALT 5516 csbima12 6050 csbcog 6270 csbiota 6504 csbriota 7359 csbov123 7431 pcmpt 16863 mpfrcl 21992 iundisj2 25450 iundisj2f 32519 iundisj2fi 32720 csbafv12g 47138 csbaovg 47181 csbafv212g 47220 |
| Copyright terms: Public domain | W3C validator |