|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > csbief | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| csbief.1 | ⊢ 𝐴 ∈ V | 
| csbief.2 | ⊢ Ⅎ𝑥𝐶 | 
| csbief.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | 
| Ref | Expression | 
|---|---|
| csbief | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | csbief.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | csbief.2 | . . . 4 ⊢ Ⅎ𝑥𝐶 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝐴 ∈ V → Ⅎ𝑥𝐶) | 
| 4 | csbief.3 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 5 | 3, 4 | csbiegf 3932 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) | 
| 6 | 1, 5 | ax-mp 5 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Ⅎwnfc 2890 Vcvv 3480 ⦋csb 3899 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-v 3482 df-sbc 3789 df-csb 3900 | 
| This theorem is referenced by: cbvrabcsfw 3940 csbun 4441 csbin 4442 csbdif 4524 csbif 4583 csbopab 5560 csbopabgALT 5561 csbima12 6097 csbcog 6317 csbiota 6554 csbriota 7403 csbov123 7475 pcmpt 16930 mpfrcl 22109 iundisj2 25584 iundisj2f 32603 iundisj2fi 32799 csbafv12g 47149 csbaovg 47192 csbafv212g 47231 | 
| Copyright terms: Public domain | W3C validator |