| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbief | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| csbief.1 | ⊢ 𝐴 ∈ V |
| csbief.2 | ⊢ Ⅎ𝑥𝐶 |
| csbief.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| csbief | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbief.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | csbief.2 | . . . 4 ⊢ Ⅎ𝑥𝐶 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝐴 ∈ V → Ⅎ𝑥𝐶) |
| 4 | csbief.3 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 5 | 3, 4 | csbiegf 3886 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| 6 | 1, 5 | ax-mp 5 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2876 Vcvv 3438 ⦋csb 3853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-v 3440 df-sbc 3745 df-csb 3854 |
| This theorem is referenced by: cbvrabcsfw 3894 csbun 4394 csbin 4395 csbdif 4477 csbif 4536 csbopab 5502 csbopabgALT 5503 csbima12 6034 csbcog 6249 csbiota 6479 csbriota 7325 csbov123 7397 pcmpt 16822 mpfrcl 22008 iundisj2 25466 iundisj2f 32552 iundisj2fi 32753 csbafv12g 47122 csbaovg 47165 csbafv212g 47204 |
| Copyright terms: Public domain | W3C validator |