MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbief Structured version   Visualization version   GIF version

Theorem csbief 3927
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbief.1 𝐴 ∈ V
csbief.2 𝑥𝐶
csbief.3 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
csbief 𝐴 / 𝑥𝐵 = 𝐶
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem csbief
StepHypRef Expression
1 csbief.1 . 2 𝐴 ∈ V
2 csbief.2 . . . 4 𝑥𝐶
32a1i 11 . . 3 (𝐴 ∈ V → 𝑥𝐶)
4 csbief.3 . . 3 (𝑥 = 𝐴𝐵 = 𝐶)
53, 4csbiegf 3926 . 2 (𝐴 ∈ V → 𝐴 / 𝑥𝐵 = 𝐶)
61, 5ax-mp 5 1 𝐴 / 𝑥𝐵 = 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  wnfc 2881  Vcvv 3472  csb 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-v 3474  df-sbc 3777  df-csb 3893
This theorem is referenced by:  csbieOLD  3929  cbvrabcsfw  3936  csbun  4437  csbin  4438  csbdif  4526  csbif  4584  csbopab  5554  csbopabgALT  5555  csbima12  6077  csbcog  6295  csbiota  6535  csbriota  7383  csbov123  7453  pcmpt  16829  mpfrcl  21867  iundisj2  25298  iundisj2f  32088  iundisj2fi  32275  csbafv12g  46143  csbaovg  46186  csbafv212g  46225
  Copyright terms: Public domain W3C validator