Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbied | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.) Reduce axiom usage. (Revised by Gino Giotto, 15-Oct-2024.) |
Ref | Expression |
---|---|
csbied.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
csbied.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbied | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3834 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
2 | csbied.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | csbied.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
4 | 3 | eleq2d 2825 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
5 | 2, 4 | sbcied 3762 | . . . . 5 ⊢ (𝜑 → ([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
6 | 5 | alrimiv 1931 | . . . 4 ⊢ (𝜑 → ∀𝑧([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
7 | df-clab 2717 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝑦 ∈ 𝐵) | |
8 | eleq1w 2822 | . . . . . . . . 9 ⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
9 | 8 | sbcbidv 3776 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑧 ∈ 𝐵)) |
10 | 9 | sbievw 2096 | . . . . . . 7 ⊢ ([𝑧 / 𝑦][𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑧 ∈ 𝐵) |
11 | 7, 10 | bitr2i 275 | . . . . . 6 ⊢ ([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵}) |
12 | 11 | bibi1i 339 | . . . . 5 ⊢ (([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶) ↔ (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ 𝑧 ∈ 𝐶)) |
13 | 12 | biimpi 215 | . . . 4 ⊢ (([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶) → (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ 𝑧 ∈ 𝐶)) |
14 | 6, 13 | sylg 1826 | . . 3 ⊢ (𝜑 → ∀𝑧(𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ 𝑧 ∈ 𝐶)) |
15 | dfcleq 2732 | . . 3 ⊢ ({𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = 𝐶 ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ 𝑧 ∈ 𝐶)) | |
16 | 14, 15 | sylibr 233 | . 2 ⊢ (𝜑 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = 𝐶) |
17 | 1, 16 | eqtrid 2791 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 [wsb 2068 ∈ wcel 2107 {cab 2716 [wsbc 3717 ⦋csb 3833 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-sbc 3718 df-csb 3834 |
This theorem is referenced by: csbied2 3873 rspc2vd 3884 el2mpocl 7935 mposn 7952 cantnfval 9435 fprodeq0 15694 imasval 17231 gsumvalx 18369 efmnd 18518 mulgfval 18711 mulgfvalALT 18712 isga 18906 gexval 19192 telgsumfz 19600 telgsumfz0 19602 telgsum 19604 isirred 19950 znval 20748 psrval 21127 mplval 21206 opsrval 21256 evlsval 21305 evls1fval 21494 evl1fval 21503 scmatval 21662 pmatcollpw3lem 21941 pm2mpval 21953 pm2mpmhmlem2 21977 chfacffsupp 22014 tsmsval2 23290 dvfsumle 25194 dvfsumabs 25196 dvfsumlem1 25199 dvfsum2 25207 itgparts 25220 q1pval 25327 r1pval 25330 rlimcnp2 26125 vmaval 26271 fsumdvdscom 26343 fsumvma 26370 logexprlim 26382 dchrval 26391 dchrisumlema 26645 dchrisumlem2 26647 dchrisumlem3 26648 ttgval 27245 ttgvalOLD 27246 finsumvtxdg2sstep 27925 idlsrgval 31657 rprmval 31673 msrval 33509 poimirlem1 35787 poimirlem2 35788 poimirlem6 35792 poimirlem7 35793 poimirlem10 35796 poimirlem11 35797 poimirlem12 35798 poimirlem23 35809 poimirlem24 35810 fsumshftd 36973 hlhilset 39955 prjspval 40449 mendval 41015 ply1mulgsumlem3 45740 ply1mulgsumlem4 45741 ply1mulgsum 45742 dmatALTval 45752 |
Copyright terms: Public domain | W3C validator |