| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbied | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.) Reduce axiom usage. (Revised by GG, 15-Oct-2024.) |
| Ref | Expression |
|---|---|
| csbied.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| csbied.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| csbied | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3854 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 2 | csbied.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | csbied.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
| 4 | 3 | eleq2d 2814 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
| 5 | 2, 4 | sbcied 3788 | . . . . 5 ⊢ (𝜑 → ([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
| 6 | 5 | alrimiv 1927 | . . . 4 ⊢ (𝜑 → ∀𝑧([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
| 7 | df-clab 2708 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝑦 ∈ 𝐵) | |
| 8 | eleq1w 2811 | . . . . . . . . 9 ⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
| 9 | 8 | sbcbidv 3800 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑧 ∈ 𝐵)) |
| 10 | 9 | sbievw 2094 | . . . . . . 7 ⊢ ([𝑧 / 𝑦][𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑧 ∈ 𝐵) |
| 11 | 7, 10 | bitr2i 276 | . . . . . 6 ⊢ ([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵}) |
| 12 | 11 | bibi1i 338 | . . . . 5 ⊢ (([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶) ↔ (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ 𝑧 ∈ 𝐶)) |
| 13 | 12 | biimpi 216 | . . . 4 ⊢ (([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶) → (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ 𝑧 ∈ 𝐶)) |
| 14 | 6, 13 | sylg 1823 | . . 3 ⊢ (𝜑 → ∀𝑧(𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ 𝑧 ∈ 𝐶)) |
| 15 | dfcleq 2722 | . . 3 ⊢ ({𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = 𝐶 ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ 𝑧 ∈ 𝐶)) | |
| 16 | 14, 15 | sylibr 234 | . 2 ⊢ (𝜑 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = 𝐶) |
| 17 | 1, 16 | eqtrid 2776 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 [wsb 2065 ∈ wcel 2109 {cab 2707 [wsbc 3744 ⦋csb 3853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3745 df-csb 3854 |
| This theorem is referenced by: csbied2 3890 rspc2vd 3901 el2mpocl 8026 mposn 8043 cantnfval 9583 fprodeq0 15900 imasval 17433 gsumvalx 18568 efmnd 18762 mulgfval 18966 mulgfvalALT 18967 isga 19188 gexval 19475 telgsumfz 19887 telgsumfz0 19889 telgsum 19891 isirred 20322 znval 21460 psrval 21840 mplval 21914 opsrval 21969 evlsval 22009 evls1fval 22222 evl1fval 22231 scmatval 22407 pmatcollpw3lem 22686 pm2mpval 22698 pm2mpmhmlem2 22722 chfacffsupp 22759 tsmsval2 24033 dvfsumle 25942 dvfsumleOLD 25943 dvfsumabs 25945 dvfsumlem1 25948 dvfsum2 25957 itgparts 25970 q1pval 26076 r1pval 26079 rlimcnp2 26892 vmaval 27039 fsumdvdscom 27111 fsumvma 27140 logexprlim 27152 dchrval 27161 dchrisumlema 27415 dchrisumlem2 27417 dchrisumlem3 27418 mulsval 28035 ttgval 28838 finsumvtxdg2sstep 29513 idlsrgval 33453 rprmval 33466 gsummoncoe1fzo 33542 msrval 35513 poimirlem1 37603 poimirlem2 37604 poimirlem6 37608 poimirlem7 37609 poimirlem10 37612 poimirlem11 37613 poimirlem12 37614 poimirlem23 37625 poimirlem24 37626 fsumshftd 38933 hlhilset 41916 isprimroot 42069 prjspval 42579 mendval 43155 isisubgr 47850 ply1mulgsumlem3 48377 ply1mulgsumlem4 48378 ply1mulgsum 48379 dmatALTval 48389 dfinito4 49490 |
| Copyright terms: Public domain | W3C validator |