| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbied | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.) Reduce axiom usage. (Revised by GG, 15-Oct-2024.) |
| Ref | Expression |
|---|---|
| csbied.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| csbied.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| csbied | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3851 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 2 | csbied.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | csbied.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
| 4 | 3 | eleq2d 2817 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
| 5 | 2, 4 | sbcied 3785 | . . . . 5 ⊢ (𝜑 → ([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
| 6 | 5 | alrimiv 1928 | . . . 4 ⊢ (𝜑 → ∀𝑧([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
| 7 | df-clab 2710 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝑦 ∈ 𝐵) | |
| 8 | eleq1w 2814 | . . . . . . . . 9 ⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
| 9 | 8 | sbcbidv 3797 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑧 ∈ 𝐵)) |
| 10 | 9 | sbievw 2096 | . . . . . . 7 ⊢ ([𝑧 / 𝑦][𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑧 ∈ 𝐵) |
| 11 | 7, 10 | bitr2i 276 | . . . . . 6 ⊢ ([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵}) |
| 12 | 11 | bibi1i 338 | . . . . 5 ⊢ (([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶) ↔ (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ 𝑧 ∈ 𝐶)) |
| 13 | 12 | biimpi 216 | . . . 4 ⊢ (([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶) → (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ 𝑧 ∈ 𝐶)) |
| 14 | 6, 13 | sylg 1824 | . . 3 ⊢ (𝜑 → ∀𝑧(𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ 𝑧 ∈ 𝐶)) |
| 15 | dfcleq 2724 | . . 3 ⊢ ({𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = 𝐶 ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ 𝑧 ∈ 𝐶)) | |
| 16 | 14, 15 | sylibr 234 | . 2 ⊢ (𝜑 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = 𝐶) |
| 17 | 1, 16 | eqtrid 2778 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 [wsb 2067 ∈ wcel 2111 {cab 2709 [wsbc 3741 ⦋csb 3850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-sbc 3742 df-csb 3851 |
| This theorem is referenced by: csbied2 3887 rspc2vd 3898 el2mpocl 8016 mposn 8033 cantnfval 9558 fprodeq0 15882 imasval 17415 gsumvalx 18584 efmnd 18778 mulgfval 18982 mulgfvalALT 18983 isga 19204 gexval 19491 telgsumfz 19903 telgsumfz0 19905 telgsum 19907 isirred 20338 znval 21473 psrval 21853 mplval 21927 opsrval 21982 evlsval 22022 evls1fval 22235 evl1fval 22244 scmatval 22420 pmatcollpw3lem 22699 pm2mpval 22711 pm2mpmhmlem2 22735 chfacffsupp 22772 tsmsval2 24046 dvfsumle 25954 dvfsumleOLD 25955 dvfsumabs 25957 dvfsumlem1 25960 dvfsum2 25969 itgparts 25982 q1pval 26088 r1pval 26091 rlimcnp2 26904 vmaval 27051 fsumdvdscom 27123 fsumvma 27152 logexprlim 27164 dchrval 27173 dchrisumlema 27427 dchrisumlem2 27429 dchrisumlem3 27430 mulsval 28049 ttgval 28854 finsumvtxdg2sstep 29529 idlsrgval 33466 rprmval 33479 gsummoncoe1fzo 33556 msrval 35580 poimirlem1 37667 poimirlem2 37668 poimirlem6 37672 poimirlem7 37673 poimirlem10 37676 poimirlem11 37677 poimirlem12 37678 poimirlem23 37689 poimirlem24 37690 fsumshftd 38997 hlhilset 41979 isprimroot 42132 prjspval 42642 mendval 43218 isisubgr 47899 ply1mulgsumlem3 48426 ply1mulgsumlem4 48427 ply1mulgsum 48428 dmatALTval 48438 dfinito4 49539 |
| Copyright terms: Public domain | W3C validator |