MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbied Structured version   Visualization version   GIF version

Theorem csbied 3871
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.) Reduce axiom usage. (Revised by Gino Giotto, 15-Oct-2024.)
Hypotheses
Ref Expression
csbied.1 (𝜑𝐴𝑉)
csbied.2 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
csbied (𝜑𝐴 / 𝑥𝐵 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem csbied
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-csb 3834 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 csbied.1 . . . . . 6 (𝜑𝐴𝑉)
3 csbied.2 . . . . . . 7 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
43eleq2d 2825 . . . . . 6 ((𝜑𝑥 = 𝐴) → (𝑧𝐵𝑧𝐶))
52, 4sbcied 3762 . . . . 5 (𝜑 → ([𝐴 / 𝑥]𝑧𝐵𝑧𝐶))
65alrimiv 1931 . . . 4 (𝜑 → ∀𝑧([𝐴 / 𝑥]𝑧𝐵𝑧𝐶))
7 df-clab 2717 . . . . . . 7 (𝑧 ∈ {𝑦[𝐴 / 𝑥]𝑦𝐵} ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝑦𝐵)
8 eleq1w 2822 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦𝐵𝑧𝐵))
98sbcbidv 3776 . . . . . . . 8 (𝑦 = 𝑧 → ([𝐴 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑧𝐵))
109sbievw 2096 . . . . . . 7 ([𝑧 / 𝑦][𝐴 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑧𝐵)
117, 10bitr2i 275 . . . . . 6 ([𝐴 / 𝑥]𝑧𝐵𝑧 ∈ {𝑦[𝐴 / 𝑥]𝑦𝐵})
1211bibi1i 339 . . . . 5 (([𝐴 / 𝑥]𝑧𝐵𝑧𝐶) ↔ (𝑧 ∈ {𝑦[𝐴 / 𝑥]𝑦𝐵} ↔ 𝑧𝐶))
1312biimpi 215 . . . 4 (([𝐴 / 𝑥]𝑧𝐵𝑧𝐶) → (𝑧 ∈ {𝑦[𝐴 / 𝑥]𝑦𝐵} ↔ 𝑧𝐶))
146, 13sylg 1826 . . 3 (𝜑 → ∀𝑧(𝑧 ∈ {𝑦[𝐴 / 𝑥]𝑦𝐵} ↔ 𝑧𝐶))
15 dfcleq 2732 . . 3 ({𝑦[𝐴 / 𝑥]𝑦𝐵} = 𝐶 ↔ ∀𝑧(𝑧 ∈ {𝑦[𝐴 / 𝑥]𝑦𝐵} ↔ 𝑧𝐶))
1614, 15sylibr 233 . 2 (𝜑 → {𝑦[𝐴 / 𝑥]𝑦𝐵} = 𝐶)
171, 16eqtrid 2791 1 (𝜑𝐴 / 𝑥𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  [wsb 2068  wcel 2107  {cab 2716  [wsbc 3717  csb 3833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2069  df-clab 2717  df-cleq 2731  df-clel 2817  df-sbc 3718  df-csb 3834
This theorem is referenced by:  csbied2  3873  rspc2vd  3884  el2mpocl  7935  mposn  7952  cantnfval  9435  fprodeq0  15694  imasval  17231  gsumvalx  18369  efmnd  18518  mulgfval  18711  mulgfvalALT  18712  isga  18906  gexval  19192  telgsumfz  19600  telgsumfz0  19602  telgsum  19604  isirred  19950  znval  20748  psrval  21127  mplval  21206  opsrval  21256  evlsval  21305  evls1fval  21494  evl1fval  21503  scmatval  21662  pmatcollpw3lem  21941  pm2mpval  21953  pm2mpmhmlem2  21977  chfacffsupp  22014  tsmsval2  23290  dvfsumle  25194  dvfsumabs  25196  dvfsumlem1  25199  dvfsum2  25207  itgparts  25220  q1pval  25327  r1pval  25330  rlimcnp2  26125  vmaval  26271  fsumdvdscom  26343  fsumvma  26370  logexprlim  26382  dchrval  26391  dchrisumlema  26645  dchrisumlem2  26647  dchrisumlem3  26648  ttgval  27245  ttgvalOLD  27246  finsumvtxdg2sstep  27925  idlsrgval  31657  rprmval  31673  msrval  33509  poimirlem1  35787  poimirlem2  35788  poimirlem6  35792  poimirlem7  35793  poimirlem10  35796  poimirlem11  35797  poimirlem12  35798  poimirlem23  35809  poimirlem24  35810  fsumshftd  36973  hlhilset  39955  prjspval  40449  mendval  41015  ply1mulgsumlem3  45740  ply1mulgsumlem4  45741  ply1mulgsum  45742  dmatALTval  45752
  Copyright terms: Public domain W3C validator