MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbied Structured version   Visualization version   GIF version

Theorem csbied 3866
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.) Reduce axiom usage. (Revised by Gino Giotto, 15-Oct-2024.)
Hypotheses
Ref Expression
csbied.1 (𝜑𝐴𝑉)
csbied.2 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
csbied (𝜑𝐴 / 𝑥𝐵 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem csbied
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-csb 3829 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 csbied.1 . . . . . 6 (𝜑𝐴𝑉)
3 csbied.2 . . . . . . 7 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
43eleq2d 2824 . . . . . 6 ((𝜑𝑥 = 𝐴) → (𝑧𝐵𝑧𝐶))
52, 4sbcied 3756 . . . . 5 (𝜑 → ([𝐴 / 𝑥]𝑧𝐵𝑧𝐶))
65alrimiv 1931 . . . 4 (𝜑 → ∀𝑧([𝐴 / 𝑥]𝑧𝐵𝑧𝐶))
7 df-clab 2716 . . . . . . 7 (𝑧 ∈ {𝑦[𝐴 / 𝑥]𝑦𝐵} ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝑦𝐵)
8 eleq1w 2821 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦𝐵𝑧𝐵))
98sbcbidv 3770 . . . . . . . 8 (𝑦 = 𝑧 → ([𝐴 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑧𝐵))
109sbievw 2097 . . . . . . 7 ([𝑧 / 𝑦][𝐴 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑧𝐵)
117, 10bitr2i 275 . . . . . 6 ([𝐴 / 𝑥]𝑧𝐵𝑧 ∈ {𝑦[𝐴 / 𝑥]𝑦𝐵})
1211bibi1i 338 . . . . 5 (([𝐴 / 𝑥]𝑧𝐵𝑧𝐶) ↔ (𝑧 ∈ {𝑦[𝐴 / 𝑥]𝑦𝐵} ↔ 𝑧𝐶))
1312biimpi 215 . . . 4 (([𝐴 / 𝑥]𝑧𝐵𝑧𝐶) → (𝑧 ∈ {𝑦[𝐴 / 𝑥]𝑦𝐵} ↔ 𝑧𝐶))
146, 13sylg 1826 . . 3 (𝜑 → ∀𝑧(𝑧 ∈ {𝑦[𝐴 / 𝑥]𝑦𝐵} ↔ 𝑧𝐶))
15 dfcleq 2731 . . 3 ({𝑦[𝐴 / 𝑥]𝑦𝐵} = 𝐶 ↔ ∀𝑧(𝑧 ∈ {𝑦[𝐴 / 𝑥]𝑦𝐵} ↔ 𝑧𝐶))
1614, 15sylibr 233 . 2 (𝜑 → {𝑦[𝐴 / 𝑥]𝑦𝐵} = 𝐶)
171, 16eqtrid 2790 1 (𝜑𝐴 / 𝑥𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  [wsb 2068  wcel 2108  {cab 2715  [wsbc 3711  csb 3828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-sbc 3712  df-csb 3829
This theorem is referenced by:  csbied2  3868  rspc2vd  3879  el2mpocl  7897  mposn  7914  cantnfval  9356  fprodeq0  15613  imasval  17139  gsumvalx  18275  efmnd  18424  mulgfval  18617  mulgfvalALT  18618  isga  18812  gexval  19098  telgsumfz  19506  telgsumfz0  19508  telgsum  19510  isirred  19856  znval  20651  psrval  21028  mplval  21107  opsrval  21157  evlsval  21206  evls1fval  21395  evl1fval  21404  scmatval  21561  pmatcollpw3lem  21840  pm2mpval  21852  pm2mpmhmlem2  21876  chfacffsupp  21913  tsmsval2  23189  dvfsumle  25090  dvfsumabs  25092  dvfsumlem1  25095  dvfsum2  25103  itgparts  25116  q1pval  25223  r1pval  25226  rlimcnp2  26021  vmaval  26167  fsumdvdscom  26239  fsumvma  26266  logexprlim  26278  dchrval  26287  dchrisumlema  26541  dchrisumlem2  26543  dchrisumlem3  26544  ttgval  27140  finsumvtxdg2sstep  27819  idlsrgval  31550  rprmval  31566  msrval  33400  poimirlem1  35705  poimirlem2  35706  poimirlem6  35710  poimirlem7  35711  poimirlem10  35714  poimirlem11  35715  poimirlem12  35716  poimirlem23  35727  poimirlem24  35728  fsumshftd  36893  hlhilset  39875  prjspval  40363  mendval  40924  ply1mulgsumlem3  45617  ply1mulgsumlem4  45618  ply1mulgsum  45619  dmatALTval  45629
  Copyright terms: Public domain W3C validator