MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbied Structured version   Visualization version   GIF version

Theorem csbied 3959
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.) Reduce axiom usage. (Revised by GG, 15-Oct-2024.)
Hypotheses
Ref Expression
csbied.1 (𝜑𝐴𝑉)
csbied.2 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
csbied (𝜑𝐴 / 𝑥𝐵 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem csbied
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-csb 3922 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 csbied.1 . . . . . 6 (𝜑𝐴𝑉)
3 csbied.2 . . . . . . 7 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
43eleq2d 2830 . . . . . 6 ((𝜑𝑥 = 𝐴) → (𝑧𝐵𝑧𝐶))
52, 4sbcied 3850 . . . . 5 (𝜑 → ([𝐴 / 𝑥]𝑧𝐵𝑧𝐶))
65alrimiv 1926 . . . 4 (𝜑 → ∀𝑧([𝐴 / 𝑥]𝑧𝐵𝑧𝐶))
7 df-clab 2718 . . . . . . 7 (𝑧 ∈ {𝑦[𝐴 / 𝑥]𝑦𝐵} ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝑦𝐵)
8 eleq1w 2827 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦𝐵𝑧𝐵))
98sbcbidv 3864 . . . . . . . 8 (𝑦 = 𝑧 → ([𝐴 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑧𝐵))
109sbievw 2093 . . . . . . 7 ([𝑧 / 𝑦][𝐴 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑧𝐵)
117, 10bitr2i 276 . . . . . 6 ([𝐴 / 𝑥]𝑧𝐵𝑧 ∈ {𝑦[𝐴 / 𝑥]𝑦𝐵})
1211bibi1i 338 . . . . 5 (([𝐴 / 𝑥]𝑧𝐵𝑧𝐶) ↔ (𝑧 ∈ {𝑦[𝐴 / 𝑥]𝑦𝐵} ↔ 𝑧𝐶))
1312biimpi 216 . . . 4 (([𝐴 / 𝑥]𝑧𝐵𝑧𝐶) → (𝑧 ∈ {𝑦[𝐴 / 𝑥]𝑦𝐵} ↔ 𝑧𝐶))
146, 13sylg 1821 . . 3 (𝜑 → ∀𝑧(𝑧 ∈ {𝑦[𝐴 / 𝑥]𝑦𝐵} ↔ 𝑧𝐶))
15 dfcleq 2733 . . 3 ({𝑦[𝐴 / 𝑥]𝑦𝐵} = 𝐶 ↔ ∀𝑧(𝑧 ∈ {𝑦[𝐴 / 𝑥]𝑦𝐵} ↔ 𝑧𝐶))
1614, 15sylibr 234 . 2 (𝜑 → {𝑦[𝐴 / 𝑥]𝑦𝐵} = 𝐶)
171, 16eqtrid 2792 1 (𝜑𝐴 / 𝑥𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  [wsb 2064  wcel 2108  {cab 2717  [wsbc 3804  csb 3921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-sbc 3805  df-csb 3922
This theorem is referenced by:  csbied2  3961  rspc2vd  3972  el2mpocl  8127  mposn  8144  cantnfval  9737  fprodeq0  16023  imasval  17571  gsumvalx  18714  efmnd  18905  mulgfval  19109  mulgfvalALT  19110  isga  19331  gexval  19620  telgsumfz  20032  telgsumfz0  20034  telgsum  20036  isirred  20445  znval  21573  psrval  21958  mplval  22032  opsrval  22087  evlsval  22133  evls1fval  22344  evl1fval  22353  scmatval  22531  pmatcollpw3lem  22810  pm2mpval  22822  pm2mpmhmlem2  22846  chfacffsupp  22883  tsmsval2  24159  dvfsumle  26080  dvfsumleOLD  26081  dvfsumabs  26083  dvfsumlem1  26086  dvfsum2  26095  itgparts  26108  q1pval  26214  r1pval  26217  rlimcnp2  27027  vmaval  27174  fsumdvdscom  27246  fsumvma  27275  logexprlim  27287  dchrval  27296  dchrisumlema  27550  dchrisumlem2  27552  dchrisumlem3  27553  mulsval  28153  ttgval  28901  ttgvalOLD  28902  finsumvtxdg2sstep  29585  idlsrgval  33496  rprmval  33509  gsummoncoe1fzo  33583  msrval  35506  poimirlem1  37581  poimirlem2  37582  poimirlem6  37586  poimirlem7  37587  poimirlem10  37590  poimirlem11  37591  poimirlem12  37592  poimirlem23  37603  poimirlem24  37604  fsumshftd  38908  hlhilset  41891  isprimroot  42050  prjspval  42558  mendval  43140  isisubgr  47734  ply1mulgsumlem3  48117  ply1mulgsumlem4  48118  ply1mulgsum  48119  dmatALTval  48129
  Copyright terms: Public domain W3C validator