| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbied | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.) Reduce axiom usage. (Revised by GG, 15-Oct-2024.) |
| Ref | Expression |
|---|---|
| csbied.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| csbied.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| csbied | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3880 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 2 | csbied.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | csbied.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
| 4 | 3 | eleq2d 2819 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
| 5 | 2, 4 | sbcied 3814 | . . . . 5 ⊢ (𝜑 → ([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
| 6 | 5 | alrimiv 1926 | . . . 4 ⊢ (𝜑 → ∀𝑧([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
| 7 | df-clab 2713 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝑦 ∈ 𝐵) | |
| 8 | eleq1w 2816 | . . . . . . . . 9 ⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
| 9 | 8 | sbcbidv 3826 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑧 ∈ 𝐵)) |
| 10 | 9 | sbievw 2092 | . . . . . . 7 ⊢ ([𝑧 / 𝑦][𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑧 ∈ 𝐵) |
| 11 | 7, 10 | bitr2i 276 | . . . . . 6 ⊢ ([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵}) |
| 12 | 11 | bibi1i 338 | . . . . 5 ⊢ (([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶) ↔ (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ 𝑧 ∈ 𝐶)) |
| 13 | 12 | biimpi 216 | . . . 4 ⊢ (([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶) → (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ 𝑧 ∈ 𝐶)) |
| 14 | 6, 13 | sylg 1822 | . . 3 ⊢ (𝜑 → ∀𝑧(𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ 𝑧 ∈ 𝐶)) |
| 15 | dfcleq 2727 | . . 3 ⊢ ({𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = 𝐶 ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ 𝑧 ∈ 𝐶)) | |
| 16 | 14, 15 | sylibr 234 | . 2 ⊢ (𝜑 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = 𝐶) |
| 17 | 1, 16 | eqtrid 2781 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 [wsb 2063 ∈ wcel 2107 {cab 2712 [wsbc 3770 ⦋csb 3879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-sbc 3771 df-csb 3880 |
| This theorem is referenced by: csbied2 3916 rspc2vd 3927 el2mpocl 8093 mposn 8110 cantnfval 9690 fprodeq0 15994 imasval 17528 gsumvalx 18659 efmnd 18853 mulgfval 19057 mulgfvalALT 19058 isga 19279 gexval 19565 telgsumfz 19977 telgsumfz0 19979 telgsum 19981 isirred 20388 znval 21509 psrval 21890 mplval 21964 opsrval 22019 evlsval 22059 evls1fval 22272 evl1fval 22281 scmatval 22459 pmatcollpw3lem 22738 pm2mpval 22750 pm2mpmhmlem2 22774 chfacffsupp 22811 tsmsval2 24085 dvfsumle 25997 dvfsumleOLD 25998 dvfsumabs 26000 dvfsumlem1 26003 dvfsum2 26012 itgparts 26025 q1pval 26131 r1pval 26134 rlimcnp2 26946 vmaval 27093 fsumdvdscom 27165 fsumvma 27194 logexprlim 27206 dchrval 27215 dchrisumlema 27469 dchrisumlem2 27471 dchrisumlem3 27472 mulsval 28072 ttgval 28820 ttgvalOLD 28821 finsumvtxdg2sstep 29496 idlsrgval 33471 rprmval 33484 gsummoncoe1fzo 33558 msrval 35518 poimirlem1 37603 poimirlem2 37604 poimirlem6 37608 poimirlem7 37609 poimirlem10 37612 poimirlem11 37613 poimirlem12 37614 poimirlem23 37625 poimirlem24 37626 fsumshftd 38928 hlhilset 41911 isprimroot 42069 prjspval 42592 mendval 43169 isisubgr 47821 ply1mulgsumlem3 48278 ply1mulgsumlem4 48279 ply1mulgsum 48280 dmatALTval 48290 dfinito4 49199 |
| Copyright terms: Public domain | W3C validator |