| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbied | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.) Reduce axiom usage. (Revised by GG, 15-Oct-2024.) |
| Ref | Expression |
|---|---|
| csbied.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| csbied.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| csbied | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3880 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 2 | csbied.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | csbied.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
| 4 | 3 | eleq2d 2821 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
| 5 | 2, 4 | sbcied 3814 | . . . . 5 ⊢ (𝜑 → ([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
| 6 | 5 | alrimiv 1927 | . . . 4 ⊢ (𝜑 → ∀𝑧([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
| 7 | df-clab 2715 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝑦 ∈ 𝐵) | |
| 8 | eleq1w 2818 | . . . . . . . . 9 ⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
| 9 | 8 | sbcbidv 3826 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑧 ∈ 𝐵)) |
| 10 | 9 | sbievw 2094 | . . . . . . 7 ⊢ ([𝑧 / 𝑦][𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑧 ∈ 𝐵) |
| 11 | 7, 10 | bitr2i 276 | . . . . . 6 ⊢ ([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵}) |
| 12 | 11 | bibi1i 338 | . . . . 5 ⊢ (([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶) ↔ (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ 𝑧 ∈ 𝐶)) |
| 13 | 12 | biimpi 216 | . . . 4 ⊢ (([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶) → (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ 𝑧 ∈ 𝐶)) |
| 14 | 6, 13 | sylg 1823 | . . 3 ⊢ (𝜑 → ∀𝑧(𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ 𝑧 ∈ 𝐶)) |
| 15 | dfcleq 2729 | . . 3 ⊢ ({𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = 𝐶 ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ 𝑧 ∈ 𝐶)) | |
| 16 | 14, 15 | sylibr 234 | . 2 ⊢ (𝜑 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = 𝐶) |
| 17 | 1, 16 | eqtrid 2783 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 [wsb 2065 ∈ wcel 2109 {cab 2714 [wsbc 3770 ⦋csb 3879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-sbc 3771 df-csb 3880 |
| This theorem is referenced by: csbied2 3916 rspc2vd 3927 el2mpocl 8090 mposn 8107 cantnfval 9687 fprodeq0 15996 imasval 17530 gsumvalx 18659 efmnd 18853 mulgfval 19057 mulgfvalALT 19058 isga 19279 gexval 19564 telgsumfz 19976 telgsumfz0 19978 telgsum 19980 isirred 20384 znval 21501 psrval 21880 mplval 21954 opsrval 22009 evlsval 22049 evls1fval 22262 evl1fval 22271 scmatval 22447 pmatcollpw3lem 22726 pm2mpval 22738 pm2mpmhmlem2 22762 chfacffsupp 22799 tsmsval2 24073 dvfsumle 25983 dvfsumleOLD 25984 dvfsumabs 25986 dvfsumlem1 25989 dvfsum2 25998 itgparts 26011 q1pval 26117 r1pval 26120 rlimcnp2 26933 vmaval 27080 fsumdvdscom 27152 fsumvma 27181 logexprlim 27193 dchrval 27202 dchrisumlema 27456 dchrisumlem2 27458 dchrisumlem3 27459 mulsval 28069 ttgval 28859 finsumvtxdg2sstep 29534 idlsrgval 33523 rprmval 33536 gsummoncoe1fzo 33612 msrval 35565 poimirlem1 37650 poimirlem2 37651 poimirlem6 37655 poimirlem7 37656 poimirlem10 37659 poimirlem11 37660 poimirlem12 37661 poimirlem23 37672 poimirlem24 37673 fsumshftd 38975 hlhilset 41958 isprimroot 42111 prjspval 42601 mendval 43178 isisubgr 47855 ply1mulgsumlem3 48344 ply1mulgsumlem4 48345 ply1mulgsum 48346 dmatALTval 48356 dfinito4 49366 |
| Copyright terms: Public domain | W3C validator |