![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbied | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.) Reduce axiom usage. (Revised by GG, 15-Oct-2024.) |
Ref | Expression |
---|---|
csbied.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
csbied.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbied | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3909 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
2 | csbied.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | csbied.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
4 | 3 | eleq2d 2825 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
5 | 2, 4 | sbcied 3837 | . . . . 5 ⊢ (𝜑 → ([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
6 | 5 | alrimiv 1925 | . . . 4 ⊢ (𝜑 → ∀𝑧([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
7 | df-clab 2713 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝑦 ∈ 𝐵) | |
8 | eleq1w 2822 | . . . . . . . . 9 ⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
9 | 8 | sbcbidv 3851 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑧 ∈ 𝐵)) |
10 | 9 | sbievw 2091 | . . . . . . 7 ⊢ ([𝑧 / 𝑦][𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑧 ∈ 𝐵) |
11 | 7, 10 | bitr2i 276 | . . . . . 6 ⊢ ([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵}) |
12 | 11 | bibi1i 338 | . . . . 5 ⊢ (([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶) ↔ (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ 𝑧 ∈ 𝐶)) |
13 | 12 | biimpi 216 | . . . 4 ⊢ (([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶) → (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ 𝑧 ∈ 𝐶)) |
14 | 6, 13 | sylg 1820 | . . 3 ⊢ (𝜑 → ∀𝑧(𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ 𝑧 ∈ 𝐶)) |
15 | dfcleq 2728 | . . 3 ⊢ ({𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = 𝐶 ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ 𝑧 ∈ 𝐶)) | |
16 | 14, 15 | sylibr 234 | . 2 ⊢ (𝜑 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = 𝐶) |
17 | 1, 16 | eqtrid 2787 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 [wsb 2062 ∈ wcel 2106 {cab 2712 [wsbc 3791 ⦋csb 3908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-sbc 3792 df-csb 3909 |
This theorem is referenced by: csbied2 3948 rspc2vd 3959 el2mpocl 8110 mposn 8127 cantnfval 9706 fprodeq0 16008 imasval 17558 gsumvalx 18702 efmnd 18896 mulgfval 19100 mulgfvalALT 19101 isga 19322 gexval 19611 telgsumfz 20023 telgsumfz0 20025 telgsum 20027 isirred 20436 znval 21568 psrval 21953 mplval 22027 opsrval 22082 evlsval 22128 evls1fval 22339 evl1fval 22348 scmatval 22526 pmatcollpw3lem 22805 pm2mpval 22817 pm2mpmhmlem2 22841 chfacffsupp 22878 tsmsval2 24154 dvfsumle 26075 dvfsumleOLD 26076 dvfsumabs 26078 dvfsumlem1 26081 dvfsum2 26090 itgparts 26103 q1pval 26209 r1pval 26212 rlimcnp2 27024 vmaval 27171 fsumdvdscom 27243 fsumvma 27272 logexprlim 27284 dchrval 27293 dchrisumlema 27547 dchrisumlem2 27549 dchrisumlem3 27550 mulsval 28150 ttgval 28898 ttgvalOLD 28899 finsumvtxdg2sstep 29582 idlsrgval 33511 rprmval 33524 gsummoncoe1fzo 33598 msrval 35523 poimirlem1 37608 poimirlem2 37609 poimirlem6 37613 poimirlem7 37614 poimirlem10 37617 poimirlem11 37618 poimirlem12 37619 poimirlem23 37630 poimirlem24 37631 fsumshftd 38934 hlhilset 41917 isprimroot 42075 prjspval 42590 mendval 43168 isisubgr 47786 ply1mulgsumlem3 48234 ply1mulgsumlem4 48235 ply1mulgsum 48236 dmatALTval 48246 |
Copyright terms: Public domain | W3C validator |