Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbied | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.) Reduce axiom usage. (Revised by Gino Giotto, 15-Oct-2024.) |
Ref | Expression |
---|---|
csbied.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
csbied.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbied | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3829 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
2 | csbied.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | csbied.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
4 | 3 | eleq2d 2824 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
5 | 2, 4 | sbcied 3756 | . . . . 5 ⊢ (𝜑 → ([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
6 | 5 | alrimiv 1931 | . . . 4 ⊢ (𝜑 → ∀𝑧([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
7 | df-clab 2716 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝑦 ∈ 𝐵) | |
8 | eleq1w 2821 | . . . . . . . . 9 ⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
9 | 8 | sbcbidv 3770 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑧 ∈ 𝐵)) |
10 | 9 | sbievw 2097 | . . . . . . 7 ⊢ ([𝑧 / 𝑦][𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑧 ∈ 𝐵) |
11 | 7, 10 | bitr2i 275 | . . . . . 6 ⊢ ([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵}) |
12 | 11 | bibi1i 338 | . . . . 5 ⊢ (([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶) ↔ (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ 𝑧 ∈ 𝐶)) |
13 | 12 | biimpi 215 | . . . 4 ⊢ (([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶) → (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ 𝑧 ∈ 𝐶)) |
14 | 6, 13 | sylg 1826 | . . 3 ⊢ (𝜑 → ∀𝑧(𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ 𝑧 ∈ 𝐶)) |
15 | dfcleq 2731 | . . 3 ⊢ ({𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = 𝐶 ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ↔ 𝑧 ∈ 𝐶)) | |
16 | 14, 15 | sylibr 233 | . 2 ⊢ (𝜑 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = 𝐶) |
17 | 1, 16 | eqtrid 2790 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 [wsb 2068 ∈ wcel 2108 {cab 2715 [wsbc 3711 ⦋csb 3828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-sbc 3712 df-csb 3829 |
This theorem is referenced by: csbied2 3868 rspc2vd 3879 el2mpocl 7897 mposn 7914 cantnfval 9356 fprodeq0 15613 imasval 17139 gsumvalx 18275 efmnd 18424 mulgfval 18617 mulgfvalALT 18618 isga 18812 gexval 19098 telgsumfz 19506 telgsumfz0 19508 telgsum 19510 isirred 19856 znval 20651 psrval 21028 mplval 21107 opsrval 21157 evlsval 21206 evls1fval 21395 evl1fval 21404 scmatval 21561 pmatcollpw3lem 21840 pm2mpval 21852 pm2mpmhmlem2 21876 chfacffsupp 21913 tsmsval2 23189 dvfsumle 25090 dvfsumabs 25092 dvfsumlem1 25095 dvfsum2 25103 itgparts 25116 q1pval 25223 r1pval 25226 rlimcnp2 26021 vmaval 26167 fsumdvdscom 26239 fsumvma 26266 logexprlim 26278 dchrval 26287 dchrisumlema 26541 dchrisumlem2 26543 dchrisumlem3 26544 ttgval 27140 finsumvtxdg2sstep 27819 idlsrgval 31550 rprmval 31566 msrval 33400 poimirlem1 35705 poimirlem2 35706 poimirlem6 35710 poimirlem7 35711 poimirlem10 35714 poimirlem11 35715 poimirlem12 35716 poimirlem23 35727 poimirlem24 35728 fsumshftd 36893 hlhilset 39875 prjspval 40363 mendval 40924 ply1mulgsumlem3 45617 ply1mulgsumlem4 45618 ply1mulgsum 45619 dmatALTval 45629 |
Copyright terms: Public domain | W3C validator |