MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbied Structured version   Visualization version   GIF version

Theorem csbied 3882
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.) Reduce axiom usage. (Revised by GG, 15-Oct-2024.)
Hypotheses
Ref Expression
csbied.1 (𝜑𝐴𝑉)
csbied.2 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
csbied (𝜑𝐴 / 𝑥𝐵 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem csbied
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-csb 3847 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 csbied.1 . . . . . 6 (𝜑𝐴𝑉)
3 csbied.2 . . . . . . 7 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
43eleq2d 2819 . . . . . 6 ((𝜑𝑥 = 𝐴) → (𝑧𝐵𝑧𝐶))
52, 4sbcied 3781 . . . . 5 (𝜑 → ([𝐴 / 𝑥]𝑧𝐵𝑧𝐶))
65alrimiv 1928 . . . 4 (𝜑 → ∀𝑧([𝐴 / 𝑥]𝑧𝐵𝑧𝐶))
7 df-clab 2712 . . . . . . 7 (𝑧 ∈ {𝑦[𝐴 / 𝑥]𝑦𝐵} ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝑦𝐵)
8 eleq1w 2816 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦𝐵𝑧𝐵))
98sbcbidv 3793 . . . . . . . 8 (𝑦 = 𝑧 → ([𝐴 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑧𝐵))
109sbievw 2098 . . . . . . 7 ([𝑧 / 𝑦][𝐴 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑧𝐵)
117, 10bitr2i 276 . . . . . 6 ([𝐴 / 𝑥]𝑧𝐵𝑧 ∈ {𝑦[𝐴 / 𝑥]𝑦𝐵})
1211bibi1i 338 . . . . 5 (([𝐴 / 𝑥]𝑧𝐵𝑧𝐶) ↔ (𝑧 ∈ {𝑦[𝐴 / 𝑥]𝑦𝐵} ↔ 𝑧𝐶))
1312biimpi 216 . . . 4 (([𝐴 / 𝑥]𝑧𝐵𝑧𝐶) → (𝑧 ∈ {𝑦[𝐴 / 𝑥]𝑦𝐵} ↔ 𝑧𝐶))
146, 13sylg 1824 . . 3 (𝜑 → ∀𝑧(𝑧 ∈ {𝑦[𝐴 / 𝑥]𝑦𝐵} ↔ 𝑧𝐶))
15 dfcleq 2726 . . 3 ({𝑦[𝐴 / 𝑥]𝑦𝐵} = 𝐶 ↔ ∀𝑧(𝑧 ∈ {𝑦[𝐴 / 𝑥]𝑦𝐵} ↔ 𝑧𝐶))
1614, 15sylibr 234 . 2 (𝜑 → {𝑦[𝐴 / 𝑥]𝑦𝐵} = 𝐶)
171, 16eqtrid 2780 1 (𝜑𝐴 / 𝑥𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  [wsb 2067  wcel 2113  {cab 2711  [wsbc 3737  csb 3846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-sbc 3738  df-csb 3847
This theorem is referenced by:  csbied2  3883  rspc2vd  3894  el2mpocl  8022  mposn  8039  cantnfval  9565  fprodeq0  15884  imasval  17417  gsumvalx  18586  efmnd  18780  mulgfval  18984  mulgfvalALT  18985  isga  19205  gexval  19492  telgsumfz  19904  telgsumfz0  19906  telgsum  19908  isirred  20339  znval  21474  psrval  21854  mplval  21927  opsrval  21982  evlsval  22022  evls1fval  22235  evl1fval  22244  scmatval  22420  pmatcollpw3lem  22699  pm2mpval  22711  pm2mpmhmlem2  22735  chfacffsupp  22772  tsmsval2  24046  dvfsumle  25954  dvfsumleOLD  25955  dvfsumabs  25957  dvfsumlem1  25960  dvfsum2  25969  itgparts  25982  q1pval  26088  r1pval  26091  rlimcnp2  26904  vmaval  27051  fsumdvdscom  27123  fsumvma  27152  logexprlim  27164  dchrval  27173  dchrisumlema  27427  dchrisumlem2  27429  dchrisumlem3  27430  mulsval  28049  ttgval  28854  finsumvtxdg2sstep  29530  idlsrgval  33475  rprmval  33488  gsummoncoe1fzo  33565  msrval  35603  poimirlem1  37682  poimirlem2  37683  poimirlem6  37687  poimirlem7  37688  poimirlem10  37691  poimirlem11  37692  poimirlem12  37693  poimirlem23  37704  poimirlem24  37705  fsumshftd  39072  hlhilset  42054  isprimroot  42207  prjspval  42722  mendval  43297  isisubgr  47987  ply1mulgsumlem3  48514  ply1mulgsumlem4  48515  ply1mulgsum  48516  dmatALTval  48526  dfinito4  49627
  Copyright terms: Public domain W3C validator