| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbieb | Structured version Visualization version GIF version | ||
| Description: Bidirectional conversion between an implicit class substitution hypothesis 𝑥 = 𝐴 → 𝐵 = 𝐶 and its explicit substitution equivalent. (Contributed by NM, 2-Mar-2008.) |
| Ref | Expression |
|---|---|
| csbieb.1 | ⊢ 𝐴 ∈ V |
| csbieb.2 | ⊢ Ⅎ𝑥𝐶 |
| Ref | Expression |
|---|---|
| csbieb | ⊢ (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbieb.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | csbieb.2 | . 2 ⊢ Ⅎ𝑥𝐶 | |
| 3 | csbiebt 3927 | . 2 ⊢ ((𝐴 ∈ V ∧ Ⅎ𝑥𝐶) → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 = wceq 1539 ∈ wcel 2107 Ⅎwnfc 2889 Vcvv 3479 ⦋csb 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-v 3481 df-sbc 3788 df-csb 3899 |
| This theorem is referenced by: csbiebg 3930 |
| Copyright terms: Public domain | W3C validator |