MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbiebg Structured version   Visualization version   GIF version

Theorem csbiebg 3921
Description: Bidirectional conversion between an implicit class substitution hypothesis 𝑥 = 𝐴𝐵 = 𝐶 and its explicit substitution equivalent. (Contributed by NM, 24-Mar-2013.) (Revised by Mario Carneiro, 11-Dec-2016.)
Hypothesis
Ref Expression
csbiebg.2 𝑥𝐶
Assertion
Ref Expression
csbiebg (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem csbiebg
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqeq2 2738 . . . 4 (𝑎 = 𝐴 → (𝑥 = 𝑎𝑥 = 𝐴))
21imbi1d 341 . . 3 (𝑎 = 𝐴 → ((𝑥 = 𝑎𝐵 = 𝐶) ↔ (𝑥 = 𝐴𝐵 = 𝐶)))
32albidv 1915 . 2 (𝑎 = 𝐴 → (∀𝑥(𝑥 = 𝑎𝐵 = 𝐶) ↔ ∀𝑥(𝑥 = 𝐴𝐵 = 𝐶)))
4 csbeq1 3891 . . 3 (𝑎 = 𝐴𝑎 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
54eqeq1d 2728 . 2 (𝑎 = 𝐴 → (𝑎 / 𝑥𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐶))
6 vex 3472 . . 3 𝑎 ∈ V
7 csbiebg.2 . . 3 𝑥𝐶
86, 7csbieb 3920 . 2 (∀𝑥(𝑥 = 𝑎𝐵 = 𝐶) ↔ 𝑎 / 𝑥𝐵 = 𝐶)
93, 5, 8vtoclbg 3539 1 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1531   = wceq 1533  wcel 2098  wnfc 2877  csb 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-v 3470  df-sbc 3773  df-csb 3889
This theorem is referenced by:  cdlemefrs29bpre0  39779
  Copyright terms: Public domain W3C validator