![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbiebg | Structured version Visualization version GIF version |
Description: Bidirectional conversion between an implicit class substitution hypothesis 𝑥 = 𝐴 → 𝐵 = 𝐶 and its explicit substitution equivalent. (Contributed by NM, 24-Mar-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
csbiebg.2 | ⊢ Ⅎ𝑥𝐶 |
Ref | Expression |
---|---|
csbiebg | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2738 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝑥 = 𝑎 ↔ 𝑥 = 𝐴)) | |
2 | 1 | imbi1d 341 | . . 3 ⊢ (𝑎 = 𝐴 → ((𝑥 = 𝑎 → 𝐵 = 𝐶) ↔ (𝑥 = 𝐴 → 𝐵 = 𝐶))) |
3 | 2 | albidv 1915 | . 2 ⊢ (𝑎 = 𝐴 → (∀𝑥(𝑥 = 𝑎 → 𝐵 = 𝐶) ↔ ∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶))) |
4 | csbeq1 3891 | . . 3 ⊢ (𝑎 = 𝐴 → ⦋𝑎 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
5 | 4 | eqeq1d 2728 | . 2 ⊢ (𝑎 = 𝐴 → (⦋𝑎 / 𝑥⦌𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) |
6 | vex 3472 | . . 3 ⊢ 𝑎 ∈ V | |
7 | csbiebg.2 | . . 3 ⊢ Ⅎ𝑥𝐶 | |
8 | 6, 7 | csbieb 3920 | . 2 ⊢ (∀𝑥(𝑥 = 𝑎 → 𝐵 = 𝐶) ↔ ⦋𝑎 / 𝑥⦌𝐵 = 𝐶) |
9 | 3, 5, 8 | vtoclbg 3539 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1531 = wceq 1533 ∈ wcel 2098 Ⅎwnfc 2877 ⦋csb 3888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-v 3470 df-sbc 3773 df-csb 3889 |
This theorem is referenced by: cdlemefrs29bpre0 39779 |
Copyright terms: Public domain | W3C validator |