| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbiedf | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| csbiedf.1 | ⊢ Ⅎ𝑥𝜑 |
| csbiedf.2 | ⊢ (𝜑 → Ⅎ𝑥𝐶) |
| csbiedf.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| csbiedf.4 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| csbiedf | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbiedf.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | csbiedf.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
| 3 | 2 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 = 𝐴 → 𝐵 = 𝐶)) |
| 4 | 1, 3 | alrimi 2214 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶)) |
| 5 | csbiedf.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 6 | csbiedf.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐶) | |
| 7 | csbiebt 3908 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐶) → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) | |
| 8 | 5, 6, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) |
| 9 | 4, 8 | mpbid 232 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2884 ⦋csb 3879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-v 3466 df-sbc 3771 df-csb 3880 |
| This theorem is referenced by: csbie2t 3917 fvmptdf 6997 fsumsplit1 15766 fprodsplit1f 16011 natpropd 17997 fucpropd 17998 gsummptf1o 19949 gsummpt2d 33048 gsummptfsf1o 33053 mnringvald 44204 sumsnd 45017 |
| Copyright terms: Public domain | W3C validator |