MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbiedf Structured version   Visualization version   GIF version

Theorem csbiedf 3909
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbiedf.1 𝑥𝜑
csbiedf.2 (𝜑𝑥𝐶)
csbiedf.3 (𝜑𝐴𝑉)
csbiedf.4 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
csbiedf (𝜑𝐴 / 𝑥𝐵 = 𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem csbiedf
StepHypRef Expression
1 csbiedf.1 . . 3 𝑥𝜑
2 csbiedf.4 . . . 4 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
32ex 412 . . 3 (𝜑 → (𝑥 = 𝐴𝐵 = 𝐶))
41, 3alrimi 2214 . 2 (𝜑 → ∀𝑥(𝑥 = 𝐴𝐵 = 𝐶))
5 csbiedf.3 . . 3 (𝜑𝐴𝑉)
6 csbiedf.2 . . 3 (𝜑𝑥𝐶)
7 csbiebt 3908 . . 3 ((𝐴𝑉𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
85, 6, 7syl2anc 584 . 2 (𝜑 → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
94, 8mpbid 232 1 (𝜑𝐴 / 𝑥𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wnf 1783  wcel 2109  wnfc 2884  csb 3879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-v 3466  df-sbc 3771  df-csb 3880
This theorem is referenced by:  csbie2t  3917  fvmptdf  6997  fsumsplit1  15766  fprodsplit1f  16011  natpropd  17997  fucpropd  17998  gsummptf1o  19949  gsummpt2d  33048  gsummptfsf1o  33053  mnringvald  44204  sumsnd  45017
  Copyright terms: Public domain W3C validator