![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbiedf | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
csbiedf.1 | ⊢ Ⅎ𝑥𝜑 |
csbiedf.2 | ⊢ (𝜑 → Ⅎ𝑥𝐶) |
csbiedf.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
csbiedf.4 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbiedf | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbiedf.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | csbiedf.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
3 | 2 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 = 𝐴 → 𝐵 = 𝐶)) |
4 | 1, 3 | alrimi 2214 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶)) |
5 | csbiedf.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | csbiedf.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐶) | |
7 | csbiebt 3951 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐶) → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) | |
8 | 5, 6, 7 | syl2anc 583 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) |
9 | 4, 8 | mpbid 232 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 ⦋csb 3921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-v 3490 df-sbc 3805 df-csb 3922 |
This theorem is referenced by: csbiedOLD 3960 csbie2t 3962 fvmptdf 7035 fsumsplit1 15793 fprodsplit1f 16038 natpropd 18046 fucpropd 18047 gsummptf1o 20005 gsummpt2d 33032 mnringvald 44177 sumsnd 44926 |
Copyright terms: Public domain | W3C validator |