Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbiedf | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
csbiedf.1 | ⊢ Ⅎ𝑥𝜑 |
csbiedf.2 | ⊢ (𝜑 → Ⅎ𝑥𝐶) |
csbiedf.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
csbiedf.4 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbiedf | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbiedf.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | csbiedf.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
3 | 2 | ex 413 | . . 3 ⊢ (𝜑 → (𝑥 = 𝐴 → 𝐵 = 𝐶)) |
4 | 1, 3 | alrimi 2206 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶)) |
5 | csbiedf.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | csbiedf.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐶) | |
7 | csbiebt 3862 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐶) → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) | |
8 | 5, 6, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) |
9 | 4, 8 | mpbid 231 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 Ⅎwnfc 2887 ⦋csb 3832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-v 3434 df-sbc 3717 df-csb 3833 |
This theorem is referenced by: csbiedOLD 3871 csbie2t 3873 fvmptdf 6881 fsumsplit1 15457 fprodsplit1f 15700 natpropd 17694 fucpropd 17695 gsummptf1o 19564 gsummpt2d 31309 mnringvald 41826 sumsnd 42569 |
Copyright terms: Public domain | W3C validator |