Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbiedf | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
csbiedf.1 | ⊢ Ⅎ𝑥𝜑 |
csbiedf.2 | ⊢ (𝜑 → Ⅎ𝑥𝐶) |
csbiedf.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
csbiedf.4 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbiedf | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbiedf.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | csbiedf.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
3 | 2 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 = 𝐴 → 𝐵 = 𝐶)) |
4 | 1, 3 | alrimi 2209 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶)) |
5 | csbiedf.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | csbiedf.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐶) | |
7 | csbiebt 3858 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐶) → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) | |
8 | 5, 6, 7 | syl2anc 583 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) |
9 | 4, 8 | mpbid 231 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 Ⅎwnfc 2886 ⦋csb 3828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-v 3424 df-sbc 3712 df-csb 3829 |
This theorem is referenced by: csbiedOLD 3867 csbie2t 3869 fvmptdf 6863 fsumsplit1 15385 fprodsplit1f 15628 natpropd 17610 fucpropd 17611 gsummptf1o 19479 gsummpt2d 31211 mnringvald 41715 sumsnd 42458 |
Copyright terms: Public domain | W3C validator |