MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbiedf Structured version   Visualization version   GIF version

Theorem csbiedf 3859
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbiedf.1 𝑥𝜑
csbiedf.2 (𝜑𝑥𝐶)
csbiedf.3 (𝜑𝐴𝑉)
csbiedf.4 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
csbiedf (𝜑𝐴 / 𝑥𝐵 = 𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem csbiedf
StepHypRef Expression
1 csbiedf.1 . . 3 𝑥𝜑
2 csbiedf.4 . . . 4 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
32ex 412 . . 3 (𝜑 → (𝑥 = 𝐴𝐵 = 𝐶))
41, 3alrimi 2209 . 2 (𝜑 → ∀𝑥(𝑥 = 𝐴𝐵 = 𝐶))
5 csbiedf.3 . . 3 (𝜑𝐴𝑉)
6 csbiedf.2 . . 3 (𝜑𝑥𝐶)
7 csbiebt 3858 . . 3 ((𝐴𝑉𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
85, 6, 7syl2anc 583 . 2 (𝜑 → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
94, 8mpbid 231 1 (𝜑𝐴 / 𝑥𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wnf 1787  wcel 2108  wnfc 2886  csb 3828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-v 3424  df-sbc 3712  df-csb 3829
This theorem is referenced by:  csbiedOLD  3867  csbie2t  3869  fvmptdf  6863  fsumsplit1  15385  fprodsplit1f  15628  natpropd  17610  fucpropd  17611  gsummptf1o  19479  gsummpt2d  31211  mnringvald  41715  sumsnd  42458
  Copyright terms: Public domain W3C validator