MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbiebt Structured version   Visualization version   GIF version

Theorem csbiebt 3912
Description: Conversion of implicit substitution to explicit substitution into a class. (Closed theorem version of csbiegf 3916.) (Contributed by NM, 11-Nov-2005.)
Assertion
Ref Expression
csbiebt ((𝐴𝑉𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem csbiebt
StepHypRef Expression
1 elex 3513 . 2 (𝐴𝑉𝐴 ∈ V)
2 spsbc 3785 . . . . 5 (𝐴 ∈ V → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) → [𝐴 / 𝑥](𝑥 = 𝐴𝐵 = 𝐶)))
32adantr 483 . . . 4 ((𝐴 ∈ V ∧ 𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) → [𝐴 / 𝑥](𝑥 = 𝐴𝐵 = 𝐶)))
4 simpl 485 . . . . 5 ((𝐴 ∈ V ∧ 𝑥𝐶) → 𝐴 ∈ V)
5 biimt 363 . . . . . . 7 (𝑥 = 𝐴 → (𝐵 = 𝐶 ↔ (𝑥 = 𝐴𝐵 = 𝐶)))
6 csbeq1a 3897 . . . . . . . 8 (𝑥 = 𝐴𝐵 = 𝐴 / 𝑥𝐵)
76eqeq1d 2823 . . . . . . 7 (𝑥 = 𝐴 → (𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐶))
85, 7bitr3d 283 . . . . . 6 (𝑥 = 𝐴 → ((𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
98adantl 484 . . . . 5 (((𝐴 ∈ V ∧ 𝑥𝐶) ∧ 𝑥 = 𝐴) → ((𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
10 nfv 1911 . . . . . 6 𝑥 𝐴 ∈ V
11 nfnfc1 2980 . . . . . 6 𝑥𝑥𝐶
1210, 11nfan 1896 . . . . 5 𝑥(𝐴 ∈ V ∧ 𝑥𝐶)
13 nfcsb1v 3907 . . . . . . 7 𝑥𝐴 / 𝑥𝐵
1413a1i 11 . . . . . 6 ((𝐴 ∈ V ∧ 𝑥𝐶) → 𝑥𝐴 / 𝑥𝐵)
15 simpr 487 . . . . . 6 ((𝐴 ∈ V ∧ 𝑥𝐶) → 𝑥𝐶)
1614, 15nfeqd 2988 . . . . 5 ((𝐴 ∈ V ∧ 𝑥𝐶) → Ⅎ𝑥𝐴 / 𝑥𝐵 = 𝐶)
174, 9, 12, 16sbciedf 3813 . . . 4 ((𝐴 ∈ V ∧ 𝑥𝐶) → ([𝐴 / 𝑥](𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
183, 17sylibd 241 . . 3 ((𝐴 ∈ V ∧ 𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) → 𝐴 / 𝑥𝐵 = 𝐶))
1913a1i 11 . . . . . . . 8 (𝑥𝐶𝑥𝐴 / 𝑥𝐵)
20 id 22 . . . . . . . 8 (𝑥𝐶𝑥𝐶)
2119, 20nfeqd 2988 . . . . . . 7 (𝑥𝐶 → Ⅎ𝑥𝐴 / 𝑥𝐵 = 𝐶)
2211, 21nfan1 2195 . . . . . 6 𝑥(𝑥𝐶𝐴 / 𝑥𝐵 = 𝐶)
237biimprcd 252 . . . . . . 7 (𝐴 / 𝑥𝐵 = 𝐶 → (𝑥 = 𝐴𝐵 = 𝐶))
2423adantl 484 . . . . . 6 ((𝑥𝐶𝐴 / 𝑥𝐵 = 𝐶) → (𝑥 = 𝐴𝐵 = 𝐶))
2522, 24alrimi 2208 . . . . 5 ((𝑥𝐶𝐴 / 𝑥𝐵 = 𝐶) → ∀𝑥(𝑥 = 𝐴𝐵 = 𝐶))
2625ex 415 . . . 4 (𝑥𝐶 → (𝐴 / 𝑥𝐵 = 𝐶 → ∀𝑥(𝑥 = 𝐴𝐵 = 𝐶)))
2726adantl 484 . . 3 ((𝐴 ∈ V ∧ 𝑥𝐶) → (𝐴 / 𝑥𝐵 = 𝐶 → ∀𝑥(𝑥 = 𝐴𝐵 = 𝐶)))
2818, 27impbid 214 . 2 ((𝐴 ∈ V ∧ 𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
291, 28sylan 582 1 ((𝐴𝑉𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1531   = wceq 1533  wcel 2110  wnfc 2961  Vcvv 3495  [wsbc 3772  csb 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-v 3497  df-sbc 3773  df-csb 3884
This theorem is referenced by:  csbiedf  3913  csbieb  3914  csbiegf  3916
  Copyright terms: Public domain W3C validator