![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cvsdivcl | Structured version Visualization version GIF version |
Description: The scalar field of a subcomplex vector space is closed under division. (Contributed by Thierry Arnoux, 22-May-2019.) |
Ref | Expression |
---|---|
cvsdiv.f | β’ πΉ = (Scalarβπ) |
cvsdiv.k | β’ πΎ = (BaseβπΉ) |
Ref | Expression |
---|---|
cvsdivcl | β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β (π΄ / π΅) β πΎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvsdiv.f | . . 3 β’ πΉ = (Scalarβπ) | |
2 | cvsdiv.k | . . 3 β’ πΎ = (BaseβπΉ) | |
3 | 1, 2 | cvsdiv 24880 | . 2 β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β (π΄ / π΅) = (π΄(/rβπΉ)π΅)) |
4 | simpl 482 | . . . . 5 β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β π β βVec) | |
5 | 4 | cvslvec 24873 | . . . 4 β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β π β LVec) |
6 | 1 | lvecdrng 20861 | . . . 4 β’ (π β LVec β πΉ β DivRing) |
7 | drngring 20508 | . . . 4 β’ (πΉ β DivRing β πΉ β Ring) | |
8 | 5, 6, 7 | 3syl 18 | . . 3 β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β πΉ β Ring) |
9 | simpr1 1193 | . . 3 β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β π΄ β πΎ) | |
10 | simpr2 1194 | . . . . 5 β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β π΅ β πΎ) | |
11 | simpr3 1195 | . . . . 5 β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β π΅ β 0) | |
12 | eldifsn 4790 | . . . . 5 β’ (π΅ β (πΎ β {0}) β (π΅ β πΎ β§ π΅ β 0)) | |
13 | 10, 11, 12 | sylanbrc 582 | . . . 4 β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β π΅ β (πΎ β {0})) |
14 | 1, 2 | cvsunit 24879 | . . . . 5 β’ (π β βVec β (πΎ β {0}) = (UnitβπΉ)) |
15 | 14 | adantr 480 | . . . 4 β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β (πΎ β {0}) = (UnitβπΉ)) |
16 | 13, 15 | eleqtrd 2834 | . . 3 β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β π΅ β (UnitβπΉ)) |
17 | eqid 2731 | . . . 4 β’ (UnitβπΉ) = (UnitβπΉ) | |
18 | eqid 2731 | . . . 4 β’ (/rβπΉ) = (/rβπΉ) | |
19 | 2, 17, 18 | dvrcl 20296 | . . 3 β’ ((πΉ β Ring β§ π΄ β πΎ β§ π΅ β (UnitβπΉ)) β (π΄(/rβπΉ)π΅) β πΎ) |
20 | 8, 9, 16, 19 | syl3anc 1370 | . 2 β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β (π΄(/rβπΉ)π΅) β πΎ) |
21 | 3, 20 | eqeltrd 2832 | 1 β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β (π΄ / π΅) β πΎ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 β wne 2939 β cdif 3945 {csn 4628 βcfv 6543 (class class class)co 7412 0cc0 11114 / cdiv 11876 Basecbs 17149 Scalarcsca 17205 Ringcrg 20128 Unitcui 20247 /rcdvr 20292 DivRingcdr 20501 LVecclvec 20858 βVecccvs 24871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-addf 11193 ax-mulf 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8215 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-fz 13490 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-minusg 18860 df-subg 19040 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-cring 20131 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-invr 20280 df-dvr 20293 df-subrg 20460 df-drng 20503 df-lvec 20859 df-cnfld 21146 df-clm 24811 df-cvs 24872 |
This theorem is referenced by: cvsmuleqdivd 24882 cvsdiveqd 24883 ttgcontlem1 28410 |
Copyright terms: Public domain | W3C validator |