MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvsdivcl Structured version   Visualization version   GIF version

Theorem cvsdivcl 25178
Description: The scalar field of a subcomplex vector space is closed under division. (Contributed by Thierry Arnoux, 22-May-2019.)
Hypotheses
Ref Expression
cvsdiv.f 𝐹 = (Scalar‘𝑊)
cvsdiv.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
cvsdivcl ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ 𝐾)

Proof of Theorem cvsdivcl
StepHypRef Expression
1 cvsdiv.f . . 3 𝐹 = (Scalar‘𝑊)
2 cvsdiv.k . . 3 𝐾 = (Base‘𝐹)
31, 2cvsdiv 25177 . 2 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴(/r𝐹)𝐵))
4 simpl 482 . . . . 5 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝑊 ∈ ℂVec)
54cvslvec 25170 . . . 4 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝑊 ∈ LVec)
61lvecdrng 21122 . . . 4 (𝑊 ∈ LVec → 𝐹 ∈ DivRing)
7 drngring 20753 . . . 4 (𝐹 ∈ DivRing → 𝐹 ∈ Ring)
85, 6, 73syl 18 . . 3 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐹 ∈ Ring)
9 simpr1 1194 . . 3 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐴𝐾)
10 simpr2 1195 . . . . 5 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐵𝐾)
11 simpr3 1196 . . . . 5 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐵 ≠ 0)
12 eldifsn 4811 . . . . 5 (𝐵 ∈ (𝐾 ∖ {0}) ↔ (𝐵𝐾𝐵 ≠ 0))
1310, 11, 12sylanbrc 582 . . . 4 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐵 ∈ (𝐾 ∖ {0}))
141, 2cvsunit 25176 . . . . 5 (𝑊 ∈ ℂVec → (𝐾 ∖ {0}) = (Unit‘𝐹))
1514adantr 480 . . . 4 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐾 ∖ {0}) = (Unit‘𝐹))
1613, 15eleqtrd 2840 . . 3 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐵 ∈ (Unit‘𝐹))
17 eqid 2734 . . . 4 (Unit‘𝐹) = (Unit‘𝐹)
18 eqid 2734 . . . 4 (/r𝐹) = (/r𝐹)
192, 17, 18dvrcl 20425 . . 3 ((𝐹 ∈ Ring ∧ 𝐴𝐾𝐵 ∈ (Unit‘𝐹)) → (𝐴(/r𝐹)𝐵) ∈ 𝐾)
208, 9, 16, 19syl3anc 1371 . 2 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴(/r𝐹)𝐵) ∈ 𝐾)
213, 20eqeltrd 2838 1 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2103  wne 2942  cdif 3967  {csn 4648  cfv 6572  (class class class)co 7445  0cc0 11180   / cdiv 11943  Basecbs 17253  Scalarcsca 17309  Ringcrg 20255  Unitcui 20376  /rcdvr 20421  DivRingcdr 20746  LVecclvec 21119  ℂVecccvs 25168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257  ax-addf 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-1st 8026  df-2nd 8027  df-tpos 8263  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-1o 8518  df-er 8759  df-en 9000  df-dom 9001  df-sdom 9002  df-fin 9003  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-div 11944  df-nn 12290  df-2 12352  df-3 12353  df-4 12354  df-5 12355  df-6 12356  df-7 12357  df-8 12358  df-9 12359  df-n0 12550  df-z 12636  df-dec 12755  df-uz 12900  df-fz 13564  df-struct 17189  df-sets 17206  df-slot 17224  df-ndx 17236  df-base 17254  df-ress 17283  df-plusg 17319  df-mulr 17320  df-starv 17321  df-tset 17325  df-ple 17326  df-ds 17328  df-unif 17329  df-0g 17496  df-mgm 18673  df-sgrp 18752  df-mnd 18768  df-grp 18971  df-minusg 18972  df-subg 19158  df-cmn 19819  df-abl 19820  df-mgp 20157  df-rng 20175  df-ur 20204  df-ring 20257  df-cring 20258  df-oppr 20355  df-dvdsr 20378  df-unit 20379  df-invr 20409  df-dvr 20422  df-subrg 20592  df-drng 20748  df-lvec 21120  df-cnfld 21383  df-clm 25108  df-cvs 25169
This theorem is referenced by:  cvsmuleqdivd  25179  cvsdiveqd  25180  ttgcontlem1  28908
  Copyright terms: Public domain W3C validator