Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cvsdivcl | Structured version Visualization version GIF version |
Description: The scalar field of a subcomplex vector space is closed under division. (Contributed by Thierry Arnoux, 22-May-2019.) |
Ref | Expression |
---|---|
cvsdiv.f | ⊢ 𝐹 = (Scalar‘𝑊) |
cvsdiv.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
cvsdivcl | ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvsdiv.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | cvsdiv.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
3 | 1, 2 | cvsdiv 24295 | . 2 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴(/r‘𝐹)𝐵)) |
4 | simpl 483 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝑊 ∈ ℂVec) | |
5 | 4 | cvslvec 24288 | . . . 4 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝑊 ∈ LVec) |
6 | 1 | lvecdrng 20367 | . . . 4 ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
7 | drngring 19998 | . . . 4 ⊢ (𝐹 ∈ DivRing → 𝐹 ∈ Ring) | |
8 | 5, 6, 7 | 3syl 18 | . . 3 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝐹 ∈ Ring) |
9 | simpr1 1193 | . . 3 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ 𝐾) | |
10 | simpr2 1194 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ 𝐾) | |
11 | simpr3 1195 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝐵 ≠ 0) | |
12 | eldifsn 4720 | . . . . 5 ⊢ (𝐵 ∈ (𝐾 ∖ {0}) ↔ (𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) | |
13 | 10, 11, 12 | sylanbrc 583 | . . . 4 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ (𝐾 ∖ {0})) |
14 | 1, 2 | cvsunit 24294 | . . . . 5 ⊢ (𝑊 ∈ ℂVec → (𝐾 ∖ {0}) = (Unit‘𝐹)) |
15 | 14 | adantr 481 | . . . 4 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐾 ∖ {0}) = (Unit‘𝐹)) |
16 | 13, 15 | eleqtrd 2841 | . . 3 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ (Unit‘𝐹)) |
17 | eqid 2738 | . . . 4 ⊢ (Unit‘𝐹) = (Unit‘𝐹) | |
18 | eqid 2738 | . . . 4 ⊢ (/r‘𝐹) = (/r‘𝐹) | |
19 | 2, 17, 18 | dvrcl 19928 | . . 3 ⊢ ((𝐹 ∈ Ring ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ (Unit‘𝐹)) → (𝐴(/r‘𝐹)𝐵) ∈ 𝐾) |
20 | 8, 9, 16, 19 | syl3anc 1370 | . 2 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐴(/r‘𝐹)𝐵) ∈ 𝐾) |
21 | 3, 20 | eqeltrd 2839 | 1 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3884 {csn 4561 ‘cfv 6433 (class class class)co 7275 0cc0 10871 / cdiv 11632 Basecbs 16912 Scalarcsca 16965 Ringcrg 19783 Unitcui 19881 /rcdvr 19924 DivRingcdr 19991 LVecclvec 20364 ℂVecccvs 24286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-subg 18752 df-cmn 19388 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-dvr 19925 df-drng 19993 df-subrg 20022 df-lvec 20365 df-cnfld 20598 df-clm 24226 df-cvs 24287 |
This theorem is referenced by: cvsmuleqdivd 24297 cvsdiveqd 24298 ttgcontlem1 27252 |
Copyright terms: Public domain | W3C validator |