MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isncvsngp Structured version   Visualization version   GIF version

Theorem isncvsngp 24018
Description: A normed subcomplex vector space is a subcomplex vector space which is a normed group with a positively homogeneous norm. (Contributed by NM, 5-Jun-2008.) (Revised by AV, 7-Oct-2021.)
Hypotheses
Ref Expression
isncvsngp.v 𝑉 = (Base‘𝑊)
isncvsngp.n 𝑁 = (norm‘𝑊)
isncvsngp.s · = ( ·𝑠𝑊)
isncvsngp.f 𝐹 = (Scalar‘𝑊)
isncvsngp.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
isncvsngp (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝐾,𝑥   𝑘,𝑁,𝑥   𝑘,𝑉,𝑥   𝑘,𝑊,𝑥   · ,𝑘,𝑥

Proof of Theorem isncvsngp
StepHypRef Expression
1 isnvc 23565 . . . . . 6 (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec))
21biancomi 466 . . . . 5 (𝑊 ∈ NrmVec ↔ (𝑊 ∈ LVec ∧ 𝑊 ∈ NrmMod))
32a1i 11 . . . 4 (𝑊 ∈ ℂVec → (𝑊 ∈ NrmVec ↔ (𝑊 ∈ LVec ∧ 𝑊 ∈ NrmMod)))
4 id 22 . . . . . 6 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂVec)
54cvslvec 23994 . . . . 5 (𝑊 ∈ ℂVec → 𝑊 ∈ LVec)
65biantrurd 536 . . . 4 (𝑊 ∈ ℂVec → (𝑊 ∈ NrmMod ↔ (𝑊 ∈ LVec ∧ 𝑊 ∈ NrmMod)))
74cvsclm 23995 . . . . 5 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod)
8 isncvsngp.v . . . . . . 7 𝑉 = (Base‘𝑊)
9 isncvsngp.n . . . . . . 7 𝑁 = (norm‘𝑊)
10 isncvsngp.s . . . . . . 7 · = ( ·𝑠𝑊)
11 isncvsngp.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
12 isncvsngp.k . . . . . . 7 𝐾 = (Base‘𝐹)
13 eqid 2734 . . . . . . 7 (norm‘𝐹) = (norm‘𝐹)
148, 9, 10, 11, 12, 13isnlm 23545 . . . . . 6 (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))))
15 3anass 1097 . . . . . . . . . . 11 ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ↔ (𝑊 ∈ NrmGrp ∧ (𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing)))
1615biancomi 466 . . . . . . . . . 10 ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ↔ ((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ 𝑊 ∈ NrmGrp))
1716anbi1i 627 . . . . . . . . 9 (((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ (((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ 𝑊 ∈ NrmGrp) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))))
18 anass 472 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ 𝑊 ∈ NrmGrp) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ ((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)))))
1917, 18bitri 278 . . . . . . . 8 (((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ ((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)))))
2019a1i 11 . . . . . . 7 (𝑊 ∈ ℂMod → (((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ ((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))))))
21 clmlmod 23936 . . . . . . . . 9 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
2211, 12clmsca 23934 . . . . . . . . . 10 (𝑊 ∈ ℂMod → 𝐹 = (ℂflds 𝐾))
23 cnnrg 23650 . . . . . . . . . . 11 fld ∈ NrmRing
2411, 12clmsubrg 23935 . . . . . . . . . . 11 (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld))
25 eqid 2734 . . . . . . . . . . . 12 (ℂflds 𝐾) = (ℂflds 𝐾)
2625subrgnrg 23543 . . . . . . . . . . 11 ((ℂfld ∈ NrmRing ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (ℂflds 𝐾) ∈ NrmRing)
2723, 24, 26sylancr 590 . . . . . . . . . 10 (𝑊 ∈ ℂMod → (ℂflds 𝐾) ∈ NrmRing)
2822, 27eqeltrd 2834 . . . . . . . . 9 (𝑊 ∈ ℂMod → 𝐹 ∈ NrmRing)
2921, 28jca 515 . . . . . . . 8 (𝑊 ∈ ℂMod → (𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing))
3029biantrurd 536 . . . . . . 7 (𝑊 ∈ ℂMod → ((𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ ((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))))))
31 ralcom 3260 . . . . . . . . 9 (∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)) ↔ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)))
3222fveq2d 6710 . . . . . . . . . . . . . . . 16 (𝑊 ∈ ℂMod → (norm‘𝐹) = (norm‘(ℂflds 𝐾)))
33 subrgsubg 19778 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ∈ (SubGrp‘ℂfld))
34 eqid 2734 . . . . . . . . . . . . . . . . . 18 (norm‘ℂfld) = (norm‘ℂfld)
35 eqid 2734 . . . . . . . . . . . . . . . . . 18 (norm‘(ℂflds 𝐾)) = (norm‘(ℂflds 𝐾))
3625, 34, 35subgnm 23503 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (SubGrp‘ℂfld) → (norm‘(ℂflds 𝐾)) = ((norm‘ℂfld) ↾ 𝐾))
3724, 33, 363syl 18 . . . . . . . . . . . . . . . 16 (𝑊 ∈ ℂMod → (norm‘(ℂflds 𝐾)) = ((norm‘ℂfld) ↾ 𝐾))
3832, 37eqtrd 2774 . . . . . . . . . . . . . . 15 (𝑊 ∈ ℂMod → (norm‘𝐹) = ((norm‘ℂfld) ↾ 𝐾))
3938adantr 484 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → (norm‘𝐹) = ((norm‘ℂfld) ↾ 𝐾))
4039fveq1d 6708 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → ((norm‘𝐹)‘𝑘) = (((norm‘ℂfld) ↾ 𝐾)‘𝑘))
41 cnfldnm 23648 . . . . . . . . . . . . . . . . 17 abs = (norm‘ℂfld)
4241eqcomi 2743 . . . . . . . . . . . . . . . 16 (norm‘ℂfld) = abs
4342reseq1i 5836 . . . . . . . . . . . . . . 15 ((norm‘ℂfld) ↾ 𝐾) = (abs ↾ 𝐾)
4443fveq1i 6707 . . . . . . . . . . . . . 14 (((norm‘ℂfld) ↾ 𝐾)‘𝑘) = ((abs ↾ 𝐾)‘𝑘)
45 fvres 6725 . . . . . . . . . . . . . . 15 (𝑘𝐾 → ((abs ↾ 𝐾)‘𝑘) = (abs‘𝑘))
4645ad2antll 729 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → ((abs ↾ 𝐾)‘𝑘) = (abs‘𝑘))
4744, 46syl5eq 2786 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → (((norm‘ℂfld) ↾ 𝐾)‘𝑘) = (abs‘𝑘))
4840, 47eqtrd 2774 . . . . . . . . . . . 12 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → ((norm‘𝐹)‘𝑘) = (abs‘𝑘))
4948oveq1d 7217 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → (((norm‘𝐹)‘𝑘) · (𝑁𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))
5049eqeq2d 2745 . . . . . . . . . 10 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → ((𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)) ↔ (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
51502ralbidva 3112 . . . . . . . . 9 (𝑊 ∈ ℂMod → (∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)) ↔ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
5231, 51syl5bb 286 . . . . . . . 8 (𝑊 ∈ ℂMod → (∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)) ↔ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
5352anbi2d 632 . . . . . . 7 (𝑊 ∈ ℂMod → ((𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
5420, 30, 533bitr2d 310 . . . . . 6 (𝑊 ∈ ℂMod → (((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
5514, 54syl5bb 286 . . . . 5 (𝑊 ∈ ℂMod → (𝑊 ∈ NrmMod ↔ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
567, 55syl 17 . . . 4 (𝑊 ∈ ℂVec → (𝑊 ∈ NrmMod ↔ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
573, 6, 563bitr2d 310 . . 3 (𝑊 ∈ ℂVec → (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
5857pm5.32i 578 . 2 ((𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmVec) ↔ (𝑊 ∈ ℂVec ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
59 elin 3873 . . 3 (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec))
6059biancomi 466 . 2 (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmVec))
61 3anass 1097 . 2 ((𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))) ↔ (𝑊 ∈ ℂVec ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
6258, 60, 613bitr4i 306 1 (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3054  cin 3856  cres 5542  cfv 6369  (class class class)co 7202   · cmul 10717  abscabs 14780  Basecbs 16684  s cress 16685  Scalarcsca 16770   ·𝑠 cvsca 16771  SubGrpcsubg 18509  SubRingcsubrg 19768  LModclmod 19871  LVecclvec 20111  fldccnfld 20335  normcnm 23446  NrmGrpcngp 23447  NrmRingcnrg 23449  NrmModcnlm 23450  NrmVeccnvc 23451  ℂModcclm 23931  ℂVecccvs 23992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790  ax-addf 10791  ax-mulf 10792
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-inf 9048  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-z 12160  df-dec 12277  df-uz 12422  df-q 12528  df-rp 12570  df-xneg 12687  df-xadd 12688  df-xmul 12689  df-ico 12924  df-fz 13079  df-seq 13558  df-exp 13619  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-starv 16782  df-tset 16786  df-ple 16787  df-ds 16789  df-unif 16790  df-rest 16899  df-topn 16900  df-0g 16918  df-topgen 16920  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-grp 18340  df-minusg 18341  df-sbg 18342  df-subg 18512  df-cmn 19144  df-mgp 19477  df-ring 19536  df-cring 19537  df-subrg 19770  df-abv 19825  df-psmet 20327  df-xmet 20328  df-met 20329  df-bl 20330  df-mopn 20331  df-cnfld 20336  df-top 21763  df-topon 21780  df-topsp 21802  df-bases 21815  df-xms 23190  df-ms 23191  df-nm 23452  df-ngp 23453  df-nrg 23455  df-nlm 23456  df-nvc 23457  df-clm 23932  df-cvs 23993
This theorem is referenced by:  isncvsngpd  24019  ncvsi  24020
  Copyright terms: Public domain W3C validator