MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isncvsngp Structured version   Visualization version   GIF version

Theorem isncvsngp 25056
Description: A normed subcomplex vector space is a subcomplex vector space which is a normed group with a positively homogeneous norm. (Contributed by NM, 5-Jun-2008.) (Revised by AV, 7-Oct-2021.)
Hypotheses
Ref Expression
isncvsngp.v 𝑉 = (Base‘𝑊)
isncvsngp.n 𝑁 = (norm‘𝑊)
isncvsngp.s · = ( ·𝑠𝑊)
isncvsngp.f 𝐹 = (Scalar‘𝑊)
isncvsngp.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
isncvsngp (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝐾,𝑥   𝑘,𝑁,𝑥   𝑘,𝑉,𝑥   𝑘,𝑊,𝑥   · ,𝑘,𝑥

Proof of Theorem isncvsngp
StepHypRef Expression
1 isnvc 24590 . . . . . 6 (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec))
21biancomi 462 . . . . 5 (𝑊 ∈ NrmVec ↔ (𝑊 ∈ LVec ∧ 𝑊 ∈ NrmMod))
32a1i 11 . . . 4 (𝑊 ∈ ℂVec → (𝑊 ∈ NrmVec ↔ (𝑊 ∈ LVec ∧ 𝑊 ∈ NrmMod)))
4 id 22 . . . . . 6 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂVec)
54cvslvec 25032 . . . . 5 (𝑊 ∈ ℂVec → 𝑊 ∈ LVec)
65biantrurd 532 . . . 4 (𝑊 ∈ ℂVec → (𝑊 ∈ NrmMod ↔ (𝑊 ∈ LVec ∧ 𝑊 ∈ NrmMod)))
74cvsclm 25033 . . . . 5 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod)
8 isncvsngp.v . . . . . . 7 𝑉 = (Base‘𝑊)
9 isncvsngp.n . . . . . . 7 𝑁 = (norm‘𝑊)
10 isncvsngp.s . . . . . . 7 · = ( ·𝑠𝑊)
11 isncvsngp.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
12 isncvsngp.k . . . . . . 7 𝐾 = (Base‘𝐹)
13 eqid 2730 . . . . . . 7 (norm‘𝐹) = (norm‘𝐹)
148, 9, 10, 11, 12, 13isnlm 24570 . . . . . 6 (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))))
15 3anass 1094 . . . . . . . . . . 11 ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ↔ (𝑊 ∈ NrmGrp ∧ (𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing)))
1615biancomi 462 . . . . . . . . . 10 ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ↔ ((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ 𝑊 ∈ NrmGrp))
1716anbi1i 624 . . . . . . . . 9 (((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ (((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ 𝑊 ∈ NrmGrp) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))))
18 anass 468 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ 𝑊 ∈ NrmGrp) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ ((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)))))
1917, 18bitri 275 . . . . . . . 8 (((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ ((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)))))
2019a1i 11 . . . . . . 7 (𝑊 ∈ ℂMod → (((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ ((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))))))
21 clmlmod 24974 . . . . . . . . 9 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
2211, 12clmsca 24972 . . . . . . . . . 10 (𝑊 ∈ ℂMod → 𝐹 = (ℂflds 𝐾))
23 cnnrg 24675 . . . . . . . . . . 11 fld ∈ NrmRing
2411, 12clmsubrg 24973 . . . . . . . . . . 11 (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld))
25 eqid 2730 . . . . . . . . . . . 12 (ℂflds 𝐾) = (ℂflds 𝐾)
2625subrgnrg 24568 . . . . . . . . . . 11 ((ℂfld ∈ NrmRing ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (ℂflds 𝐾) ∈ NrmRing)
2723, 24, 26sylancr 587 . . . . . . . . . 10 (𝑊 ∈ ℂMod → (ℂflds 𝐾) ∈ NrmRing)
2822, 27eqeltrd 2829 . . . . . . . . 9 (𝑊 ∈ ℂMod → 𝐹 ∈ NrmRing)
2921, 28jca 511 . . . . . . . 8 (𝑊 ∈ ℂMod → (𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing))
3029biantrurd 532 . . . . . . 7 (𝑊 ∈ ℂMod → ((𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ ((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))))))
31 ralcom 3266 . . . . . . . . 9 (∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)) ↔ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)))
3222fveq2d 6865 . . . . . . . . . . . . . . . 16 (𝑊 ∈ ℂMod → (norm‘𝐹) = (norm‘(ℂflds 𝐾)))
33 subrgsubg 20493 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ∈ (SubGrp‘ℂfld))
34 eqid 2730 . . . . . . . . . . . . . . . . . 18 (norm‘ℂfld) = (norm‘ℂfld)
35 eqid 2730 . . . . . . . . . . . . . . . . . 18 (norm‘(ℂflds 𝐾)) = (norm‘(ℂflds 𝐾))
3625, 34, 35subgnm 24528 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (SubGrp‘ℂfld) → (norm‘(ℂflds 𝐾)) = ((norm‘ℂfld) ↾ 𝐾))
3724, 33, 363syl 18 . . . . . . . . . . . . . . . 16 (𝑊 ∈ ℂMod → (norm‘(ℂflds 𝐾)) = ((norm‘ℂfld) ↾ 𝐾))
3832, 37eqtrd 2765 . . . . . . . . . . . . . . 15 (𝑊 ∈ ℂMod → (norm‘𝐹) = ((norm‘ℂfld) ↾ 𝐾))
3938adantr 480 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → (norm‘𝐹) = ((norm‘ℂfld) ↾ 𝐾))
4039fveq1d 6863 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → ((norm‘𝐹)‘𝑘) = (((norm‘ℂfld) ↾ 𝐾)‘𝑘))
41 cnfldnm 24673 . . . . . . . . . . . . . . . . 17 abs = (norm‘ℂfld)
4241eqcomi 2739 . . . . . . . . . . . . . . . 16 (norm‘ℂfld) = abs
4342reseq1i 5949 . . . . . . . . . . . . . . 15 ((norm‘ℂfld) ↾ 𝐾) = (abs ↾ 𝐾)
4443fveq1i 6862 . . . . . . . . . . . . . 14 (((norm‘ℂfld) ↾ 𝐾)‘𝑘) = ((abs ↾ 𝐾)‘𝑘)
45 fvres 6880 . . . . . . . . . . . . . . 15 (𝑘𝐾 → ((abs ↾ 𝐾)‘𝑘) = (abs‘𝑘))
4645ad2antll 729 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → ((abs ↾ 𝐾)‘𝑘) = (abs‘𝑘))
4744, 46eqtrid 2777 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → (((norm‘ℂfld) ↾ 𝐾)‘𝑘) = (abs‘𝑘))
4840, 47eqtrd 2765 . . . . . . . . . . . 12 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → ((norm‘𝐹)‘𝑘) = (abs‘𝑘))
4948oveq1d 7405 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → (((norm‘𝐹)‘𝑘) · (𝑁𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))
5049eqeq2d 2741 . . . . . . . . . 10 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → ((𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)) ↔ (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
51502ralbidva 3200 . . . . . . . . 9 (𝑊 ∈ ℂMod → (∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)) ↔ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
5231, 51bitrid 283 . . . . . . . 8 (𝑊 ∈ ℂMod → (∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)) ↔ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
5352anbi2d 630 . . . . . . 7 (𝑊 ∈ ℂMod → ((𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
5420, 30, 533bitr2d 307 . . . . . 6 (𝑊 ∈ ℂMod → (((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
5514, 54bitrid 283 . . . . 5 (𝑊 ∈ ℂMod → (𝑊 ∈ NrmMod ↔ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
567, 55syl 17 . . . 4 (𝑊 ∈ ℂVec → (𝑊 ∈ NrmMod ↔ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
573, 6, 563bitr2d 307 . . 3 (𝑊 ∈ ℂVec → (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
5857pm5.32i 574 . 2 ((𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmVec) ↔ (𝑊 ∈ ℂVec ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
59 elin 3933 . . 3 (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec))
6059biancomi 462 . 2 (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmVec))
61 3anass 1094 . 2 ((𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))) ↔ (𝑊 ∈ ℂVec ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
6258, 60, 613bitr4i 303 1 (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  cin 3916  cres 5643  cfv 6514  (class class class)co 7390   · cmul 11080  abscabs 15207  Basecbs 17186  s cress 17207  Scalarcsca 17230   ·𝑠 cvsca 17231  SubGrpcsubg 19059  SubRingcsubrg 20485  LModclmod 20773  LVecclvec 21016  fldccnfld 21271  normcnm 24471  NrmGrpcngp 24472  NrmRingcnrg 24474  NrmModcnlm 24475  NrmVeccnvc 24476  ℂModcclm 24969  ℂVecccvs 25030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ico 13319  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-rest 17392  df-topn 17393  df-0g 17411  df-topgen 17413  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-subrng 20462  df-subrg 20486  df-abv 20725  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-xms 24215  df-ms 24216  df-nm 24477  df-ngp 24478  df-nrg 24480  df-nlm 24481  df-nvc 24482  df-clm 24970  df-cvs 25031
This theorem is referenced by:  isncvsngpd  25057  ncvsi  25058
  Copyright terms: Public domain W3C validator