MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isncvsngp Structured version   Visualization version   GIF version

Theorem isncvsngp 25183
Description: A normed subcomplex vector space is a subcomplex vector space which is a normed group with a positively homogeneous norm. (Contributed by NM, 5-Jun-2008.) (Revised by AV, 7-Oct-2021.)
Hypotheses
Ref Expression
isncvsngp.v 𝑉 = (Base‘𝑊)
isncvsngp.n 𝑁 = (norm‘𝑊)
isncvsngp.s · = ( ·𝑠𝑊)
isncvsngp.f 𝐹 = (Scalar‘𝑊)
isncvsngp.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
isncvsngp (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝐾,𝑥   𝑘,𝑁,𝑥   𝑘,𝑉,𝑥   𝑘,𝑊,𝑥   · ,𝑘,𝑥

Proof of Theorem isncvsngp
StepHypRef Expression
1 isnvc 24716 . . . . . 6 (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec))
21biancomi 462 . . . . 5 (𝑊 ∈ NrmVec ↔ (𝑊 ∈ LVec ∧ 𝑊 ∈ NrmMod))
32a1i 11 . . . 4 (𝑊 ∈ ℂVec → (𝑊 ∈ NrmVec ↔ (𝑊 ∈ LVec ∧ 𝑊 ∈ NrmMod)))
4 id 22 . . . . . 6 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂVec)
54cvslvec 25158 . . . . 5 (𝑊 ∈ ℂVec → 𝑊 ∈ LVec)
65biantrurd 532 . . . 4 (𝑊 ∈ ℂVec → (𝑊 ∈ NrmMod ↔ (𝑊 ∈ LVec ∧ 𝑊 ∈ NrmMod)))
74cvsclm 25159 . . . . 5 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod)
8 isncvsngp.v . . . . . . 7 𝑉 = (Base‘𝑊)
9 isncvsngp.n . . . . . . 7 𝑁 = (norm‘𝑊)
10 isncvsngp.s . . . . . . 7 · = ( ·𝑠𝑊)
11 isncvsngp.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
12 isncvsngp.k . . . . . . 7 𝐾 = (Base‘𝐹)
13 eqid 2737 . . . . . . 7 (norm‘𝐹) = (norm‘𝐹)
148, 9, 10, 11, 12, 13isnlm 24696 . . . . . 6 (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))))
15 3anass 1095 . . . . . . . . . . 11 ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ↔ (𝑊 ∈ NrmGrp ∧ (𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing)))
1615biancomi 462 . . . . . . . . . 10 ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ↔ ((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ 𝑊 ∈ NrmGrp))
1716anbi1i 624 . . . . . . . . 9 (((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ (((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ 𝑊 ∈ NrmGrp) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))))
18 anass 468 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ 𝑊 ∈ NrmGrp) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ ((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)))))
1917, 18bitri 275 . . . . . . . 8 (((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ ((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)))))
2019a1i 11 . . . . . . 7 (𝑊 ∈ ℂMod → (((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ ((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))))))
21 clmlmod 25100 . . . . . . . . 9 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
2211, 12clmsca 25098 . . . . . . . . . 10 (𝑊 ∈ ℂMod → 𝐹 = (ℂflds 𝐾))
23 cnnrg 24801 . . . . . . . . . . 11 fld ∈ NrmRing
2411, 12clmsubrg 25099 . . . . . . . . . . 11 (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld))
25 eqid 2737 . . . . . . . . . . . 12 (ℂflds 𝐾) = (ℂflds 𝐾)
2625subrgnrg 24694 . . . . . . . . . . 11 ((ℂfld ∈ NrmRing ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (ℂflds 𝐾) ∈ NrmRing)
2723, 24, 26sylancr 587 . . . . . . . . . 10 (𝑊 ∈ ℂMod → (ℂflds 𝐾) ∈ NrmRing)
2822, 27eqeltrd 2841 . . . . . . . . 9 (𝑊 ∈ ℂMod → 𝐹 ∈ NrmRing)
2921, 28jca 511 . . . . . . . 8 (𝑊 ∈ ℂMod → (𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing))
3029biantrurd 532 . . . . . . 7 (𝑊 ∈ ℂMod → ((𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ ((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))))))
31 ralcom 3289 . . . . . . . . 9 (∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)) ↔ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)))
3222fveq2d 6910 . . . . . . . . . . . . . . . 16 (𝑊 ∈ ℂMod → (norm‘𝐹) = (norm‘(ℂflds 𝐾)))
33 subrgsubg 20577 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ∈ (SubGrp‘ℂfld))
34 eqid 2737 . . . . . . . . . . . . . . . . . 18 (norm‘ℂfld) = (norm‘ℂfld)
35 eqid 2737 . . . . . . . . . . . . . . . . . 18 (norm‘(ℂflds 𝐾)) = (norm‘(ℂflds 𝐾))
3625, 34, 35subgnm 24646 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (SubGrp‘ℂfld) → (norm‘(ℂflds 𝐾)) = ((norm‘ℂfld) ↾ 𝐾))
3724, 33, 363syl 18 . . . . . . . . . . . . . . . 16 (𝑊 ∈ ℂMod → (norm‘(ℂflds 𝐾)) = ((norm‘ℂfld) ↾ 𝐾))
3832, 37eqtrd 2777 . . . . . . . . . . . . . . 15 (𝑊 ∈ ℂMod → (norm‘𝐹) = ((norm‘ℂfld) ↾ 𝐾))
3938adantr 480 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → (norm‘𝐹) = ((norm‘ℂfld) ↾ 𝐾))
4039fveq1d 6908 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → ((norm‘𝐹)‘𝑘) = (((norm‘ℂfld) ↾ 𝐾)‘𝑘))
41 cnfldnm 24799 . . . . . . . . . . . . . . . . 17 abs = (norm‘ℂfld)
4241eqcomi 2746 . . . . . . . . . . . . . . . 16 (norm‘ℂfld) = abs
4342reseq1i 5993 . . . . . . . . . . . . . . 15 ((norm‘ℂfld) ↾ 𝐾) = (abs ↾ 𝐾)
4443fveq1i 6907 . . . . . . . . . . . . . 14 (((norm‘ℂfld) ↾ 𝐾)‘𝑘) = ((abs ↾ 𝐾)‘𝑘)
45 fvres 6925 . . . . . . . . . . . . . . 15 (𝑘𝐾 → ((abs ↾ 𝐾)‘𝑘) = (abs‘𝑘))
4645ad2antll 729 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → ((abs ↾ 𝐾)‘𝑘) = (abs‘𝑘))
4744, 46eqtrid 2789 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → (((norm‘ℂfld) ↾ 𝐾)‘𝑘) = (abs‘𝑘))
4840, 47eqtrd 2777 . . . . . . . . . . . 12 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → ((norm‘𝐹)‘𝑘) = (abs‘𝑘))
4948oveq1d 7446 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → (((norm‘𝐹)‘𝑘) · (𝑁𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))
5049eqeq2d 2748 . . . . . . . . . 10 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → ((𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)) ↔ (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
51502ralbidva 3219 . . . . . . . . 9 (𝑊 ∈ ℂMod → (∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)) ↔ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
5231, 51bitrid 283 . . . . . . . 8 (𝑊 ∈ ℂMod → (∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)) ↔ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
5352anbi2d 630 . . . . . . 7 (𝑊 ∈ ℂMod → ((𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
5420, 30, 533bitr2d 307 . . . . . 6 (𝑊 ∈ ℂMod → (((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
5514, 54bitrid 283 . . . . 5 (𝑊 ∈ ℂMod → (𝑊 ∈ NrmMod ↔ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
567, 55syl 17 . . . 4 (𝑊 ∈ ℂVec → (𝑊 ∈ NrmMod ↔ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
573, 6, 563bitr2d 307 . . 3 (𝑊 ∈ ℂVec → (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
5857pm5.32i 574 . 2 ((𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmVec) ↔ (𝑊 ∈ ℂVec ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
59 elin 3967 . . 3 (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec))
6059biancomi 462 . 2 (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmVec))
61 3anass 1095 . 2 ((𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))) ↔ (𝑊 ∈ ℂVec ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
6258, 60, 613bitr4i 303 1 (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  cin 3950  cres 5687  cfv 6561  (class class class)co 7431   · cmul 11160  abscabs 15273  Basecbs 17247  s cress 17274  Scalarcsca 17300   ·𝑠 cvsca 17301  SubGrpcsubg 19138  SubRingcsubrg 20569  LModclmod 20858  LVecclvec 21101  fldccnfld 21364  normcnm 24589  NrmGrpcngp 24590  NrmRingcnrg 24592  NrmModcnlm 24593  NrmVeccnvc 24594  ℂModcclm 25095  ℂVecccvs 25156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ico 13393  df-fz 13548  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-rest 17467  df-topn 17468  df-0g 17486  df-topgen 17488  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-subrng 20546  df-subrg 20570  df-abv 20810  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-xms 24330  df-ms 24331  df-nm 24595  df-ngp 24596  df-nrg 24598  df-nlm 24599  df-nvc 24600  df-clm 25096  df-cvs 25157
This theorem is referenced by:  isncvsngpd  25184  ncvsi  25185
  Copyright terms: Public domain W3C validator