MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isncvsngp Structured version   Visualization version   GIF version

Theorem isncvsngp 25047
Description: A normed subcomplex vector space is a subcomplex vector space which is a normed group with a positively homogeneous norm. (Contributed by NM, 5-Jun-2008.) (Revised by AV, 7-Oct-2021.)
Hypotheses
Ref Expression
isncvsngp.v 𝑉 = (Base‘𝑊)
isncvsngp.n 𝑁 = (norm‘𝑊)
isncvsngp.s · = ( ·𝑠𝑊)
isncvsngp.f 𝐹 = (Scalar‘𝑊)
isncvsngp.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
isncvsngp (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝐾,𝑥   𝑘,𝑁,𝑥   𝑘,𝑉,𝑥   𝑘,𝑊,𝑥   · ,𝑘,𝑥

Proof of Theorem isncvsngp
StepHypRef Expression
1 isnvc 24581 . . . . . 6 (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec))
21biancomi 462 . . . . 5 (𝑊 ∈ NrmVec ↔ (𝑊 ∈ LVec ∧ 𝑊 ∈ NrmMod))
32a1i 11 . . . 4 (𝑊 ∈ ℂVec → (𝑊 ∈ NrmVec ↔ (𝑊 ∈ LVec ∧ 𝑊 ∈ NrmMod)))
4 id 22 . . . . . 6 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂVec)
54cvslvec 25023 . . . . 5 (𝑊 ∈ ℂVec → 𝑊 ∈ LVec)
65biantrurd 532 . . . 4 (𝑊 ∈ ℂVec → (𝑊 ∈ NrmMod ↔ (𝑊 ∈ LVec ∧ 𝑊 ∈ NrmMod)))
74cvsclm 25024 . . . . 5 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod)
8 isncvsngp.v . . . . . . 7 𝑉 = (Base‘𝑊)
9 isncvsngp.n . . . . . . 7 𝑁 = (norm‘𝑊)
10 isncvsngp.s . . . . . . 7 · = ( ·𝑠𝑊)
11 isncvsngp.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
12 isncvsngp.k . . . . . . 7 𝐾 = (Base‘𝐹)
13 eqid 2729 . . . . . . 7 (norm‘𝐹) = (norm‘𝐹)
148, 9, 10, 11, 12, 13isnlm 24561 . . . . . 6 (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))))
15 3anass 1094 . . . . . . . . . . 11 ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ↔ (𝑊 ∈ NrmGrp ∧ (𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing)))
1615biancomi 462 . . . . . . . . . 10 ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ↔ ((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ 𝑊 ∈ NrmGrp))
1716anbi1i 624 . . . . . . . . 9 (((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ (((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ 𝑊 ∈ NrmGrp) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))))
18 anass 468 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ 𝑊 ∈ NrmGrp) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ ((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)))))
1917, 18bitri 275 . . . . . . . 8 (((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ ((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)))))
2019a1i 11 . . . . . . 7 (𝑊 ∈ ℂMod → (((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ ((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))))))
21 clmlmod 24965 . . . . . . . . 9 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
2211, 12clmsca 24963 . . . . . . . . . 10 (𝑊 ∈ ℂMod → 𝐹 = (ℂflds 𝐾))
23 cnnrg 24666 . . . . . . . . . . 11 fld ∈ NrmRing
2411, 12clmsubrg 24964 . . . . . . . . . . 11 (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld))
25 eqid 2729 . . . . . . . . . . . 12 (ℂflds 𝐾) = (ℂflds 𝐾)
2625subrgnrg 24559 . . . . . . . . . . 11 ((ℂfld ∈ NrmRing ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (ℂflds 𝐾) ∈ NrmRing)
2723, 24, 26sylancr 587 . . . . . . . . . 10 (𝑊 ∈ ℂMod → (ℂflds 𝐾) ∈ NrmRing)
2822, 27eqeltrd 2828 . . . . . . . . 9 (𝑊 ∈ ℂMod → 𝐹 ∈ NrmRing)
2921, 28jca 511 . . . . . . . 8 (𝑊 ∈ ℂMod → (𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing))
3029biantrurd 532 . . . . . . 7 (𝑊 ∈ ℂMod → ((𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ ((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))))))
31 ralcom 3257 . . . . . . . . 9 (∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)) ↔ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)))
3222fveq2d 6826 . . . . . . . . . . . . . . . 16 (𝑊 ∈ ℂMod → (norm‘𝐹) = (norm‘(ℂflds 𝐾)))
33 subrgsubg 20462 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ∈ (SubGrp‘ℂfld))
34 eqid 2729 . . . . . . . . . . . . . . . . . 18 (norm‘ℂfld) = (norm‘ℂfld)
35 eqid 2729 . . . . . . . . . . . . . . . . . 18 (norm‘(ℂflds 𝐾)) = (norm‘(ℂflds 𝐾))
3625, 34, 35subgnm 24519 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (SubGrp‘ℂfld) → (norm‘(ℂflds 𝐾)) = ((norm‘ℂfld) ↾ 𝐾))
3724, 33, 363syl 18 . . . . . . . . . . . . . . . 16 (𝑊 ∈ ℂMod → (norm‘(ℂflds 𝐾)) = ((norm‘ℂfld) ↾ 𝐾))
3832, 37eqtrd 2764 . . . . . . . . . . . . . . 15 (𝑊 ∈ ℂMod → (norm‘𝐹) = ((norm‘ℂfld) ↾ 𝐾))
3938adantr 480 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → (norm‘𝐹) = ((norm‘ℂfld) ↾ 𝐾))
4039fveq1d 6824 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → ((norm‘𝐹)‘𝑘) = (((norm‘ℂfld) ↾ 𝐾)‘𝑘))
41 cnfldnm 24664 . . . . . . . . . . . . . . . . 17 abs = (norm‘ℂfld)
4241eqcomi 2738 . . . . . . . . . . . . . . . 16 (norm‘ℂfld) = abs
4342reseq1i 5926 . . . . . . . . . . . . . . 15 ((norm‘ℂfld) ↾ 𝐾) = (abs ↾ 𝐾)
4443fveq1i 6823 . . . . . . . . . . . . . 14 (((norm‘ℂfld) ↾ 𝐾)‘𝑘) = ((abs ↾ 𝐾)‘𝑘)
45 fvres 6841 . . . . . . . . . . . . . . 15 (𝑘𝐾 → ((abs ↾ 𝐾)‘𝑘) = (abs‘𝑘))
4645ad2antll 729 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → ((abs ↾ 𝐾)‘𝑘) = (abs‘𝑘))
4744, 46eqtrid 2776 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → (((norm‘ℂfld) ↾ 𝐾)‘𝑘) = (abs‘𝑘))
4840, 47eqtrd 2764 . . . . . . . . . . . 12 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → ((norm‘𝐹)‘𝑘) = (abs‘𝑘))
4948oveq1d 7364 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → (((norm‘𝐹)‘𝑘) · (𝑁𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))
5049eqeq2d 2740 . . . . . . . . . 10 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → ((𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)) ↔ (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
51502ralbidva 3191 . . . . . . . . 9 (𝑊 ∈ ℂMod → (∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)) ↔ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
5231, 51bitrid 283 . . . . . . . 8 (𝑊 ∈ ℂMod → (∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)) ↔ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
5352anbi2d 630 . . . . . . 7 (𝑊 ∈ ℂMod → ((𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
5420, 30, 533bitr2d 307 . . . . . 6 (𝑊 ∈ ℂMod → (((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
5514, 54bitrid 283 . . . . 5 (𝑊 ∈ ℂMod → (𝑊 ∈ NrmMod ↔ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
567, 55syl 17 . . . 4 (𝑊 ∈ ℂVec → (𝑊 ∈ NrmMod ↔ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
573, 6, 563bitr2d 307 . . 3 (𝑊 ∈ ℂVec → (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
5857pm5.32i 574 . 2 ((𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmVec) ↔ (𝑊 ∈ ℂVec ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
59 elin 3919 . . 3 (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec))
6059biancomi 462 . 2 (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmVec))
61 3anass 1094 . 2 ((𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))) ↔ (𝑊 ∈ ℂVec ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
6258, 60, 613bitr4i 303 1 (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cin 3902  cres 5621  cfv 6482  (class class class)co 7349   · cmul 11014  abscabs 15141  Basecbs 17120  s cress 17141  Scalarcsca 17164   ·𝑠 cvsca 17165  SubGrpcsubg 18999  SubRingcsubrg 20454  LModclmod 20763  LVecclvec 21006  fldccnfld 21261  normcnm 24462  NrmGrpcngp 24463  NrmRingcnrg 24465  NrmModcnlm 24466  NrmVeccnvc 24467  ℂModcclm 24960  ℂVecccvs 25021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ico 13254  df-fz 13411  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-rest 17326  df-topn 17327  df-0g 17345  df-topgen 17347  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-subrng 20431  df-subrg 20455  df-abv 20694  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-xms 24206  df-ms 24207  df-nm 24468  df-ngp 24469  df-nrg 24471  df-nlm 24472  df-nvc 24473  df-clm 24961  df-cvs 25022
This theorem is referenced by:  isncvsngpd  25048  ncvsi  25049
  Copyright terms: Public domain W3C validator