Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dedth2h | Structured version Visualization version GIF version |
Description: Weak deduction theorem eliminating two hypotheses. This theorem is simpler to use than dedth2v 4527 but requires that each hypothesis have exactly one class variable. See also comments in dedth 4523. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
dedth2h.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜒 ↔ 𝜃)) |
dedth2h.2 | ⊢ (𝐵 = if(𝜓, 𝐵, 𝐷) → (𝜃 ↔ 𝜏)) |
dedth2h.3 | ⊢ 𝜏 |
Ref | Expression |
---|---|
dedth2h | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedth2h.1 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜒 ↔ 𝜃)) | |
2 | 1 | imbi2d 341 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
3 | dedth2h.2 | . . . 4 ⊢ (𝐵 = if(𝜓, 𝐵, 𝐷) → (𝜃 ↔ 𝜏)) | |
4 | dedth2h.3 | . . . 4 ⊢ 𝜏 | |
5 | 3, 4 | dedth 4523 | . . 3 ⊢ (𝜓 → 𝜃) |
6 | 2, 5 | dedth 4523 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
7 | 6 | imp 408 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ifcif 4465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-if 4466 |
This theorem is referenced by: dedth3h 4525 dedth4h 4526 dedth2v 4527 oawordeu 8417 oeoa 8459 unfilem3 9124 eluzadd 12659 eluzsub 12660 sqeqor 13978 binom2 13979 divalglem7 16153 divalg 16157 nmlno0 29202 ipassi 29248 sii 29261 ajfun 29267 ubth 29280 hvnegdi 29474 hvsubeq0 29475 normlem9at 29528 normsub0 29543 norm-ii 29545 norm-iii 29547 normsub 29550 normpyth 29552 norm3adifi 29560 normpar 29562 polid 29566 bcs 29588 shscl 29725 shslej 29787 shincl 29788 pjoc1 29841 pjoml 29843 pjoc2 29846 chincl 29906 chsscon3 29907 chlejb1 29919 chnle 29921 chdmm1 29932 spanun 29952 elspansn2 29974 h1datom 29989 cmbr3 30015 pjoml2 30018 pjoml3 30019 cmcm 30021 cmcm3 30022 lecm 30024 osum 30052 spansnj 30054 pjadji 30092 pjaddi 30093 pjsubi 30095 pjmuli 30096 pjch 30101 pj11 30121 pjnorm 30131 pjpyth 30132 pjnel 30133 hosubcl 30180 hoaddcom 30181 ho0sub 30204 honegsub 30206 eigre 30242 lnopeq0lem2 30413 lnopeq 30416 lnopunii 30419 lnophmi 30425 cvmd 30743 chrelat2 30777 cvexch 30781 mdsym 30819 kur14 33223 abs2sqle 33683 abs2sqlt 33684 |
Copyright terms: Public domain | W3C validator |