Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dedth2h | Structured version Visualization version GIF version |
Description: Weak deduction theorem eliminating two hypotheses. This theorem is simpler to use than dedth2v 4526 but requires that each hypothesis have exactly one class variable. See also comments in dedth 4522. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
dedth2h.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜒 ↔ 𝜃)) |
dedth2h.2 | ⊢ (𝐵 = if(𝜓, 𝐵, 𝐷) → (𝜃 ↔ 𝜏)) |
dedth2h.3 | ⊢ 𝜏 |
Ref | Expression |
---|---|
dedth2h | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedth2h.1 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜒 ↔ 𝜃)) | |
2 | 1 | imbi2d 340 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
3 | dedth2h.2 | . . . 4 ⊢ (𝐵 = if(𝜓, 𝐵, 𝐷) → (𝜃 ↔ 𝜏)) | |
4 | dedth2h.3 | . . . 4 ⊢ 𝜏 | |
5 | 3, 4 | dedth 4522 | . . 3 ⊢ (𝜓 → 𝜃) |
6 | 2, 5 | dedth 4522 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
7 | 6 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ifcif 4464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-if 4465 |
This theorem is referenced by: dedth3h 4524 dedth4h 4525 dedth2v 4526 oawordeu 8362 oeoa 8404 unfilem3 9041 eluzadd 12595 eluzsub 12596 sqeqor 13913 binom2 13914 divalglem7 16089 divalg 16093 nmlno0 29136 ipassi 29182 sii 29195 ajfun 29201 ubth 29214 hvnegdi 29408 hvsubeq0 29409 normlem9at 29462 normsub0 29477 norm-ii 29479 norm-iii 29481 normsub 29484 normpyth 29486 norm3adifi 29494 normpar 29496 polid 29500 bcs 29522 shscl 29659 shslej 29721 shincl 29722 pjoc1 29775 pjoml 29777 pjoc2 29780 chincl 29840 chsscon3 29841 chlejb1 29853 chnle 29855 chdmm1 29866 spanun 29886 elspansn2 29908 h1datom 29923 cmbr3 29949 pjoml2 29952 pjoml3 29953 cmcm 29955 cmcm3 29956 lecm 29958 osum 29986 spansnj 29988 pjadji 30026 pjaddi 30027 pjsubi 30029 pjmuli 30030 pjch 30035 pj11 30055 pjnorm 30065 pjpyth 30066 pjnel 30067 hosubcl 30114 hoaddcom 30115 ho0sub 30138 honegsub 30140 eigre 30176 lnopeq0lem2 30347 lnopeq 30350 lnopunii 30353 lnophmi 30359 cvmd 30677 chrelat2 30711 cvexch 30715 mdsym 30753 kur14 33157 abs2sqle 33617 abs2sqlt 33618 |
Copyright terms: Public domain | W3C validator |