| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dedth2h | Structured version Visualization version GIF version | ||
| Description: Weak deduction theorem eliminating two hypotheses. This theorem is simpler to use than dedth2v 4551 but requires that each hypothesis have exactly one class variable. See also comments in dedth 4547. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| dedth2h.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜒 ↔ 𝜃)) |
| dedth2h.2 | ⊢ (𝐵 = if(𝜓, 𝐵, 𝐷) → (𝜃 ↔ 𝜏)) |
| dedth2h.3 | ⊢ 𝜏 |
| Ref | Expression |
|---|---|
| dedth2h | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedth2h.1 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | imbi2d 340 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
| 3 | dedth2h.2 | . . . 4 ⊢ (𝐵 = if(𝜓, 𝐵, 𝐷) → (𝜃 ↔ 𝜏)) | |
| 4 | dedth2h.3 | . . . 4 ⊢ 𝜏 | |
| 5 | 3, 4 | dedth 4547 | . . 3 ⊢ (𝜓 → 𝜃) |
| 6 | 2, 5 | dedth 4547 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 7 | 6 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ifcif 4488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4489 |
| This theorem is referenced by: dedth3h 4549 dedth4h 4550 dedth2v 4551 oawordeu 8519 oeoa 8561 unfilem3 9256 eluzaddOLD 12828 eluzsubOLD 12829 sqeqor 14181 binom2 14182 divalglem7 16369 divalg 16373 nmlno0 30724 ipassi 30770 sii 30783 ajfun 30789 ubth 30802 hvnegdi 30996 hvsubeq0 30997 normlem9at 31050 normsub0 31065 norm-ii 31067 norm-iii 31069 normsub 31072 normpyth 31074 norm3adifi 31082 normpar 31084 polid 31088 bcs 31110 shscl 31247 shslej 31309 shincl 31310 pjoc1 31363 pjoml 31365 pjoc2 31368 chincl 31428 chsscon3 31429 chlejb1 31441 chnle 31443 chdmm1 31454 spanun 31474 elspansn2 31496 h1datom 31511 cmbr3 31537 pjoml2 31540 pjoml3 31541 cmcm 31543 cmcm3 31544 lecm 31546 osum 31574 spansnj 31576 pjadji 31614 pjaddi 31615 pjsubi 31617 pjmuli 31618 pjch 31623 pj11 31643 pjnorm 31653 pjpyth 31654 pjnel 31655 hosubcl 31702 hoaddcom 31703 ho0sub 31726 honegsub 31728 eigre 31764 lnopeq0lem2 31935 lnopeq 31938 lnopunii 31941 lnophmi 31947 cvmd 32265 chrelat2 32299 cvexch 32303 mdsym 32341 kur14 35203 abs2sqle 35667 abs2sqlt 35668 |
| Copyright terms: Public domain | W3C validator |