| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dedth2h | Structured version Visualization version GIF version | ||
| Description: Weak deduction theorem eliminating two hypotheses. This theorem is simpler to use than dedth2v 4541 but requires that each hypothesis have exactly one class variable. See also comments in dedth 4537. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| dedth2h.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜒 ↔ 𝜃)) |
| dedth2h.2 | ⊢ (𝐵 = if(𝜓, 𝐵, 𝐷) → (𝜃 ↔ 𝜏)) |
| dedth2h.3 | ⊢ 𝜏 |
| Ref | Expression |
|---|---|
| dedth2h | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedth2h.1 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | imbi2d 340 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
| 3 | dedth2h.2 | . . . 4 ⊢ (𝐵 = if(𝜓, 𝐵, 𝐷) → (𝜃 ↔ 𝜏)) | |
| 4 | dedth2h.3 | . . . 4 ⊢ 𝜏 | |
| 5 | 3, 4 | dedth 4537 | . . 3 ⊢ (𝜓 → 𝜃) |
| 6 | 2, 5 | dedth 4537 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 7 | 6 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ifcif 4478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4479 |
| This theorem is referenced by: dedth3h 4539 dedth4h 4540 dedth2v 4541 oawordeu 8480 oeoa 8522 unfilem3 9214 eluzaddOLD 12788 eluzsubOLD 12789 sqeqor 14141 binom2 14142 divalglem7 16328 divalg 16332 nmlno0 30757 ipassi 30803 sii 30816 ajfun 30822 ubth 30835 hvnegdi 31029 hvsubeq0 31030 normlem9at 31083 normsub0 31098 norm-ii 31100 norm-iii 31102 normsub 31105 normpyth 31107 norm3adifi 31115 normpar 31117 polid 31121 bcs 31143 shscl 31280 shslej 31342 shincl 31343 pjoc1 31396 pjoml 31398 pjoc2 31401 chincl 31461 chsscon3 31462 chlejb1 31474 chnle 31476 chdmm1 31487 spanun 31507 elspansn2 31529 h1datom 31544 cmbr3 31570 pjoml2 31573 pjoml3 31574 cmcm 31576 cmcm3 31577 lecm 31579 osum 31607 spansnj 31609 pjadji 31647 pjaddi 31648 pjsubi 31650 pjmuli 31651 pjch 31656 pj11 31676 pjnorm 31686 pjpyth 31687 pjnel 31688 hosubcl 31735 hoaddcom 31736 ho0sub 31759 honegsub 31761 eigre 31797 lnopeq0lem2 31968 lnopeq 31971 lnopunii 31974 lnophmi 31980 cvmd 32298 chrelat2 32332 cvexch 32336 mdsym 32374 kur14 35191 abs2sqle 35655 abs2sqlt 35656 |
| Copyright terms: Public domain | W3C validator |