![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dedth2h | Structured version Visualization version GIF version |
Description: Weak deduction theorem eliminating two hypotheses. This theorem is simpler to use than dedth2v 4591 but requires that each hypothesis have exactly one class variable. See also comments in dedth 4587. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
dedth2h.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜒 ↔ 𝜃)) |
dedth2h.2 | ⊢ (𝐵 = if(𝜓, 𝐵, 𝐷) → (𝜃 ↔ 𝜏)) |
dedth2h.3 | ⊢ 𝜏 |
Ref | Expression |
---|---|
dedth2h | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedth2h.1 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜒 ↔ 𝜃)) | |
2 | 1 | imbi2d 341 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
3 | dedth2h.2 | . . . 4 ⊢ (𝐵 = if(𝜓, 𝐵, 𝐷) → (𝜃 ↔ 𝜏)) | |
4 | dedth2h.3 | . . . 4 ⊢ 𝜏 | |
5 | 3, 4 | dedth 4587 | . . 3 ⊢ (𝜓 → 𝜃) |
6 | 2, 5 | dedth 4587 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
7 | 6 | imp 408 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ifcif 4529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-if 4530 |
This theorem is referenced by: dedth3h 4589 dedth4h 4590 dedth2v 4591 oawordeu 8555 oeoa 8597 unfilem3 9312 eluzaddOLD 12857 eluzsubOLD 12858 sqeqor 14180 binom2 14181 divalglem7 16342 divalg 16346 nmlno0 30079 ipassi 30125 sii 30138 ajfun 30144 ubth 30157 hvnegdi 30351 hvsubeq0 30352 normlem9at 30405 normsub0 30420 norm-ii 30422 norm-iii 30424 normsub 30427 normpyth 30429 norm3adifi 30437 normpar 30439 polid 30443 bcs 30465 shscl 30602 shslej 30664 shincl 30665 pjoc1 30718 pjoml 30720 pjoc2 30723 chincl 30783 chsscon3 30784 chlejb1 30796 chnle 30798 chdmm1 30809 spanun 30829 elspansn2 30851 h1datom 30866 cmbr3 30892 pjoml2 30895 pjoml3 30896 cmcm 30898 cmcm3 30899 lecm 30901 osum 30929 spansnj 30931 pjadji 30969 pjaddi 30970 pjsubi 30972 pjmuli 30973 pjch 30978 pj11 30998 pjnorm 31008 pjpyth 31009 pjnel 31010 hosubcl 31057 hoaddcom 31058 ho0sub 31081 honegsub 31083 eigre 31119 lnopeq0lem2 31290 lnopeq 31293 lnopunii 31296 lnophmi 31302 cvmd 31620 chrelat2 31654 cvexch 31658 mdsym 31696 kur14 34238 abs2sqle 34696 abs2sqlt 34697 |
Copyright terms: Public domain | W3C validator |