![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dedth2h | Structured version Visualization version GIF version |
Description: Weak deduction theorem eliminating two hypotheses. This theorem is simpler to use than dedth2v 4593 but requires that each hypothesis have exactly one class variable. See also comments in dedth 4589. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
dedth2h.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜒 ↔ 𝜃)) |
dedth2h.2 | ⊢ (𝐵 = if(𝜓, 𝐵, 𝐷) → (𝜃 ↔ 𝜏)) |
dedth2h.3 | ⊢ 𝜏 |
Ref | Expression |
---|---|
dedth2h | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedth2h.1 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜒 ↔ 𝜃)) | |
2 | 1 | imbi2d 340 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
3 | dedth2h.2 | . . . 4 ⊢ (𝐵 = if(𝜓, 𝐵, 𝐷) → (𝜃 ↔ 𝜏)) | |
4 | dedth2h.3 | . . . 4 ⊢ 𝜏 | |
5 | 3, 4 | dedth 4589 | . . 3 ⊢ (𝜓 → 𝜃) |
6 | 2, 5 | dedth 4589 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
7 | 6 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ifcif 4531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-if 4532 |
This theorem is referenced by: dedth3h 4591 dedth4h 4592 dedth2v 4593 oawordeu 8592 oeoa 8634 unfilem3 9343 eluzaddOLD 12911 eluzsubOLD 12912 sqeqor 14252 binom2 14253 divalglem7 16433 divalg 16437 nmlno0 30824 ipassi 30870 sii 30883 ajfun 30889 ubth 30902 hvnegdi 31096 hvsubeq0 31097 normlem9at 31150 normsub0 31165 norm-ii 31167 norm-iii 31169 normsub 31172 normpyth 31174 norm3adifi 31182 normpar 31184 polid 31188 bcs 31210 shscl 31347 shslej 31409 shincl 31410 pjoc1 31463 pjoml 31465 pjoc2 31468 chincl 31528 chsscon3 31529 chlejb1 31541 chnle 31543 chdmm1 31554 spanun 31574 elspansn2 31596 h1datom 31611 cmbr3 31637 pjoml2 31640 pjoml3 31641 cmcm 31643 cmcm3 31644 lecm 31646 osum 31674 spansnj 31676 pjadji 31714 pjaddi 31715 pjsubi 31717 pjmuli 31718 pjch 31723 pj11 31743 pjnorm 31753 pjpyth 31754 pjnel 31755 hosubcl 31802 hoaddcom 31803 ho0sub 31826 honegsub 31828 eigre 31864 lnopeq0lem2 32035 lnopeq 32038 lnopunii 32041 lnophmi 32047 cvmd 32365 chrelat2 32399 cvexch 32403 mdsym 32441 kur14 35201 abs2sqle 35665 abs2sqlt 35666 |
Copyright terms: Public domain | W3C validator |