| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dedth2h | Structured version Visualization version GIF version | ||
| Description: Weak deduction theorem eliminating two hypotheses. This theorem is simpler to use than dedth2v 4568 but requires that each hypothesis have exactly one class variable. See also comments in dedth 4564. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| dedth2h.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜒 ↔ 𝜃)) |
| dedth2h.2 | ⊢ (𝐵 = if(𝜓, 𝐵, 𝐷) → (𝜃 ↔ 𝜏)) |
| dedth2h.3 | ⊢ 𝜏 |
| Ref | Expression |
|---|---|
| dedth2h | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedth2h.1 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | imbi2d 340 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
| 3 | dedth2h.2 | . . . 4 ⊢ (𝐵 = if(𝜓, 𝐵, 𝐷) → (𝜃 ↔ 𝜏)) | |
| 4 | dedth2h.3 | . . . 4 ⊢ 𝜏 | |
| 5 | 3, 4 | dedth 4564 | . . 3 ⊢ (𝜓 → 𝜃) |
| 6 | 2, 5 | dedth 4564 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 7 | 6 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ifcif 4505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-if 4506 |
| This theorem is referenced by: dedth3h 4566 dedth4h 4567 dedth2v 4568 oawordeu 8572 oeoa 8614 unfilem3 9322 eluzaddOLD 12892 eluzsubOLD 12893 sqeqor 14239 binom2 14240 divalglem7 16423 divalg 16427 nmlno0 30781 ipassi 30827 sii 30840 ajfun 30846 ubth 30859 hvnegdi 31053 hvsubeq0 31054 normlem9at 31107 normsub0 31122 norm-ii 31124 norm-iii 31126 normsub 31129 normpyth 31131 norm3adifi 31139 normpar 31141 polid 31145 bcs 31167 shscl 31304 shslej 31366 shincl 31367 pjoc1 31420 pjoml 31422 pjoc2 31425 chincl 31485 chsscon3 31486 chlejb1 31498 chnle 31500 chdmm1 31511 spanun 31531 elspansn2 31553 h1datom 31568 cmbr3 31594 pjoml2 31597 pjoml3 31598 cmcm 31600 cmcm3 31601 lecm 31603 osum 31631 spansnj 31633 pjadji 31671 pjaddi 31672 pjsubi 31674 pjmuli 31675 pjch 31680 pj11 31700 pjnorm 31710 pjpyth 31711 pjnel 31712 hosubcl 31759 hoaddcom 31760 ho0sub 31783 honegsub 31785 eigre 31821 lnopeq0lem2 31992 lnopeq 31995 lnopunii 31998 lnophmi 32004 cvmd 32322 chrelat2 32356 cvexch 32360 mdsym 32398 kur14 35243 abs2sqle 35707 abs2sqlt 35708 |
| Copyright terms: Public domain | W3C validator |