| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dedth2h | Structured version Visualization version GIF version | ||
| Description: Weak deduction theorem eliminating two hypotheses. This theorem is simpler to use than dedth2v 4538 but requires that each hypothesis have exactly one class variable. See also comments in dedth 4534. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| dedth2h.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜒 ↔ 𝜃)) |
| dedth2h.2 | ⊢ (𝐵 = if(𝜓, 𝐵, 𝐷) → (𝜃 ↔ 𝜏)) |
| dedth2h.3 | ⊢ 𝜏 |
| Ref | Expression |
|---|---|
| dedth2h | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedth2h.1 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | imbi2d 340 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
| 3 | dedth2h.2 | . . . 4 ⊢ (𝐵 = if(𝜓, 𝐵, 𝐷) → (𝜃 ↔ 𝜏)) | |
| 4 | dedth2h.3 | . . . 4 ⊢ 𝜏 | |
| 5 | 3, 4 | dedth 4534 | . . 3 ⊢ (𝜓 → 𝜃) |
| 6 | 2, 5 | dedth 4534 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 7 | 6 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ifcif 4475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-if 4476 |
| This theorem is referenced by: dedth3h 4536 dedth4h 4537 dedth2v 4538 oawordeu 8470 oeoa 8512 unfilem3 9191 eluzaddOLD 12767 eluzsubOLD 12768 sqeqor 14123 binom2 14124 divalglem7 16310 divalg 16314 nmlno0 30773 ipassi 30819 sii 30832 ajfun 30838 ubth 30851 hvnegdi 31045 hvsubeq0 31046 normlem9at 31099 normsub0 31114 norm-ii 31116 norm-iii 31118 normsub 31121 normpyth 31123 norm3adifi 31131 normpar 31133 polid 31137 bcs 31159 shscl 31296 shslej 31358 shincl 31359 pjoc1 31412 pjoml 31414 pjoc2 31417 chincl 31477 chsscon3 31478 chlejb1 31490 chnle 31492 chdmm1 31503 spanun 31523 elspansn2 31545 h1datom 31560 cmbr3 31586 pjoml2 31589 pjoml3 31590 cmcm 31592 cmcm3 31593 lecm 31595 osum 31623 spansnj 31625 pjadji 31663 pjaddi 31664 pjsubi 31666 pjmuli 31667 pjch 31672 pj11 31692 pjnorm 31702 pjpyth 31703 pjnel 31704 hosubcl 31751 hoaddcom 31752 ho0sub 31775 honegsub 31777 eigre 31813 lnopeq0lem2 31984 lnopeq 31987 lnopunii 31990 lnophmi 31996 cvmd 32314 chrelat2 32348 cvexch 32352 mdsym 32390 kur14 35258 abs2sqle 35722 abs2sqlt 35723 |
| Copyright terms: Public domain | W3C validator |