| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dedth2h | Structured version Visualization version GIF version | ||
| Description: Weak deduction theorem eliminating two hypotheses. This theorem is simpler to use than dedth2v 4537 but requires that each hypothesis have exactly one class variable. See also comments in dedth 4533. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| dedth2h.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜒 ↔ 𝜃)) |
| dedth2h.2 | ⊢ (𝐵 = if(𝜓, 𝐵, 𝐷) → (𝜃 ↔ 𝜏)) |
| dedth2h.3 | ⊢ 𝜏 |
| Ref | Expression |
|---|---|
| dedth2h | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedth2h.1 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | imbi2d 340 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
| 3 | dedth2h.2 | . . . 4 ⊢ (𝐵 = if(𝜓, 𝐵, 𝐷) → (𝜃 ↔ 𝜏)) | |
| 4 | dedth2h.3 | . . . 4 ⊢ 𝜏 | |
| 5 | 3, 4 | dedth 4533 | . . 3 ⊢ (𝜓 → 𝜃) |
| 6 | 2, 5 | dedth 4533 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 7 | 6 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ifcif 4474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-if 4475 |
| This theorem is referenced by: dedth3h 4535 dedth4h 4536 dedth2v 4537 oawordeu 8476 oeoa 8518 unfilem3 9198 sqeqor 14125 binom2 14126 divalglem7 16312 divalg 16316 nmlno0 30777 ipassi 30823 sii 30836 ajfun 30842 ubth 30855 hvnegdi 31049 hvsubeq0 31050 normlem9at 31103 normsub0 31118 norm-ii 31120 norm-iii 31122 normsub 31125 normpyth 31127 norm3adifi 31135 normpar 31137 polid 31141 bcs 31163 shscl 31300 shslej 31362 shincl 31363 pjoc1 31416 pjoml 31418 pjoc2 31421 chincl 31481 chsscon3 31482 chlejb1 31494 chnle 31496 chdmm1 31507 spanun 31527 elspansn2 31549 h1datom 31564 cmbr3 31590 pjoml2 31593 pjoml3 31594 cmcm 31596 cmcm3 31597 lecm 31599 osum 31627 spansnj 31629 pjadji 31667 pjaddi 31668 pjsubi 31670 pjmuli 31671 pjch 31676 pj11 31696 pjnorm 31706 pjpyth 31707 pjnel 31708 hosubcl 31755 hoaddcom 31756 ho0sub 31779 honegsub 31781 eigre 31817 lnopeq0lem2 31988 lnopeq 31991 lnopunii 31994 lnophmi 32000 cvmd 32318 chrelat2 32352 cvexch 32356 mdsym 32394 kur14 35281 abs2sqle 35745 abs2sqlt 35746 |
| Copyright terms: Public domain | W3C validator |