Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dedth2h | Structured version Visualization version GIF version |
Description: Weak deduction theorem eliminating two hypotheses. This theorem is simpler to use than dedth2v 4527 but requires that each hypothesis have exactly one class variable. See also comments in dedth 4523. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
dedth2h.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜒 ↔ 𝜃)) |
dedth2h.2 | ⊢ (𝐵 = if(𝜓, 𝐵, 𝐷) → (𝜃 ↔ 𝜏)) |
dedth2h.3 | ⊢ 𝜏 |
Ref | Expression |
---|---|
dedth2h | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedth2h.1 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜒 ↔ 𝜃)) | |
2 | 1 | imbi2d 341 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
3 | dedth2h.2 | . . . 4 ⊢ (𝐵 = if(𝜓, 𝐵, 𝐷) → (𝜃 ↔ 𝜏)) | |
4 | dedth2h.3 | . . . 4 ⊢ 𝜏 | |
5 | 3, 4 | dedth 4523 | . . 3 ⊢ (𝜓 → 𝜃) |
6 | 2, 5 | dedth 4523 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
7 | 6 | imp 407 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ifcif 4465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-if 4466 |
This theorem is referenced by: dedth3h 4525 dedth4h 4526 dedth2v 4527 oawordeu 8363 oeoa 8405 unfilem3 9050 eluzadd 12604 eluzsub 12605 sqeqor 13922 binom2 13923 divalglem7 16098 divalg 16102 nmlno0 29145 ipassi 29191 sii 29204 ajfun 29210 ubth 29223 hvnegdi 29417 hvsubeq0 29418 normlem9at 29471 normsub0 29486 norm-ii 29488 norm-iii 29490 normsub 29493 normpyth 29495 norm3adifi 29503 normpar 29505 polid 29509 bcs 29531 shscl 29668 shslej 29730 shincl 29731 pjoc1 29784 pjoml 29786 pjoc2 29789 chincl 29849 chsscon3 29850 chlejb1 29862 chnle 29864 chdmm1 29875 spanun 29895 elspansn2 29917 h1datom 29932 cmbr3 29958 pjoml2 29961 pjoml3 29962 cmcm 29964 cmcm3 29965 lecm 29967 osum 29995 spansnj 29997 pjadji 30035 pjaddi 30036 pjsubi 30038 pjmuli 30039 pjch 30044 pj11 30064 pjnorm 30074 pjpyth 30075 pjnel 30076 hosubcl 30123 hoaddcom 30124 ho0sub 30147 honegsub 30149 eigre 30185 lnopeq0lem2 30356 lnopeq 30359 lnopunii 30362 lnophmi 30368 cvmd 30686 chrelat2 30720 cvexch 30724 mdsym 30762 kur14 33166 abs2sqle 33626 abs2sqlt 33627 |
Copyright terms: Public domain | W3C validator |