![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dedth2h | Structured version Visualization version GIF version |
Description: Weak deduction theorem eliminating two hypotheses. This theorem is simpler to use than dedth2v 4610 but requires that each hypothesis have exactly one class variable. See also comments in dedth 4606. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
dedth2h.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜒 ↔ 𝜃)) |
dedth2h.2 | ⊢ (𝐵 = if(𝜓, 𝐵, 𝐷) → (𝜃 ↔ 𝜏)) |
dedth2h.3 | ⊢ 𝜏 |
Ref | Expression |
---|---|
dedth2h | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedth2h.1 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜒 ↔ 𝜃)) | |
2 | 1 | imbi2d 340 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
3 | dedth2h.2 | . . . 4 ⊢ (𝐵 = if(𝜓, 𝐵, 𝐷) → (𝜃 ↔ 𝜏)) | |
4 | dedth2h.3 | . . . 4 ⊢ 𝜏 | |
5 | 3, 4 | dedth 4606 | . . 3 ⊢ (𝜓 → 𝜃) |
6 | 2, 5 | dedth 4606 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
7 | 6 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ifcif 4548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-if 4549 |
This theorem is referenced by: dedth3h 4608 dedth4h 4609 dedth2v 4610 oawordeu 8611 oeoa 8653 unfilem3 9373 eluzaddOLD 12938 eluzsubOLD 12939 sqeqor 14265 binom2 14266 divalglem7 16447 divalg 16451 nmlno0 30827 ipassi 30873 sii 30886 ajfun 30892 ubth 30905 hvnegdi 31099 hvsubeq0 31100 normlem9at 31153 normsub0 31168 norm-ii 31170 norm-iii 31172 normsub 31175 normpyth 31177 norm3adifi 31185 normpar 31187 polid 31191 bcs 31213 shscl 31350 shslej 31412 shincl 31413 pjoc1 31466 pjoml 31468 pjoc2 31471 chincl 31531 chsscon3 31532 chlejb1 31544 chnle 31546 chdmm1 31557 spanun 31577 elspansn2 31599 h1datom 31614 cmbr3 31640 pjoml2 31643 pjoml3 31644 cmcm 31646 cmcm3 31647 lecm 31649 osum 31677 spansnj 31679 pjadji 31717 pjaddi 31718 pjsubi 31720 pjmuli 31721 pjch 31726 pj11 31746 pjnorm 31756 pjpyth 31757 pjnel 31758 hosubcl 31805 hoaddcom 31806 ho0sub 31829 honegsub 31831 eigre 31867 lnopeq0lem2 32038 lnopeq 32041 lnopunii 32044 lnophmi 32050 cvmd 32368 chrelat2 32402 cvexch 32406 mdsym 32444 kur14 35184 abs2sqle 35648 abs2sqlt 35649 |
Copyright terms: Public domain | W3C validator |