MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dedth4h Structured version   Visualization version   GIF version

Theorem dedth4h 4517
Description: Weak deduction theorem eliminating four hypotheses. See comments in dedth2h 4515. (Contributed by NM, 16-May-1999.)
Hypotheses
Ref Expression
dedth4h.1 (𝐴 = if(𝜑, 𝐴, 𝑅) → (𝜏𝜂))
dedth4h.2 (𝐵 = if(𝜓, 𝐵, 𝑆) → (𝜂𝜁))
dedth4h.3 (𝐶 = if(𝜒, 𝐶, 𝐹) → (𝜁𝜎))
dedth4h.4 (𝐷 = if(𝜃, 𝐷, 𝐺) → (𝜎𝜌))
dedth4h.5 𝜌
Assertion
Ref Expression
dedth4h (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)

Proof of Theorem dedth4h
StepHypRef Expression
1 dedth4h.1 . . . 4 (𝐴 = if(𝜑, 𝐴, 𝑅) → (𝜏𝜂))
21imbi2d 340 . . 3 (𝐴 = if(𝜑, 𝐴, 𝑅) → (((𝜒𝜃) → 𝜏) ↔ ((𝜒𝜃) → 𝜂)))
3 dedth4h.2 . . . 4 (𝐵 = if(𝜓, 𝐵, 𝑆) → (𝜂𝜁))
43imbi2d 340 . . 3 (𝐵 = if(𝜓, 𝐵, 𝑆) → (((𝜒𝜃) → 𝜂) ↔ ((𝜒𝜃) → 𝜁)))
5 dedth4h.3 . . . 4 (𝐶 = if(𝜒, 𝐶, 𝐹) → (𝜁𝜎))
6 dedth4h.4 . . . 4 (𝐷 = if(𝜃, 𝐷, 𝐺) → (𝜎𝜌))
7 dedth4h.5 . . . 4 𝜌
85, 6, 7dedth2h 4515 . . 3 ((𝜒𝜃) → 𝜁)
92, 4, 8dedth2h 4515 . 2 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
109imp 406 1 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  ifcif 4456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-if 4457
This theorem is referenced by:  dedth4v  4520  fprg  7009  omopth  8452  nn0opth2  13914  ax5seglem8  27207  hvsubsub4  29323  norm3lemt  29415  eigorth  30101
  Copyright terms: Public domain W3C validator