| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dedth4h | Structured version Visualization version GIF version | ||
| Description: Weak deduction theorem eliminating four hypotheses. See comments in dedth2h 4565. (Contributed by NM, 16-May-1999.) |
| Ref | Expression |
|---|---|
| dedth4h.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝑅) → (𝜏 ↔ 𝜂)) |
| dedth4h.2 | ⊢ (𝐵 = if(𝜓, 𝐵, 𝑆) → (𝜂 ↔ 𝜁)) |
| dedth4h.3 | ⊢ (𝐶 = if(𝜒, 𝐶, 𝐹) → (𝜁 ↔ 𝜎)) |
| dedth4h.4 | ⊢ (𝐷 = if(𝜃, 𝐷, 𝐺) → (𝜎 ↔ 𝜌)) |
| dedth4h.5 | ⊢ 𝜌 |
| Ref | Expression |
|---|---|
| dedth4h | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedth4h.1 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝑅) → (𝜏 ↔ 𝜂)) | |
| 2 | 1 | imbi2d 340 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝑅) → (((𝜒 ∧ 𝜃) → 𝜏) ↔ ((𝜒 ∧ 𝜃) → 𝜂))) |
| 3 | dedth4h.2 | . . . 4 ⊢ (𝐵 = if(𝜓, 𝐵, 𝑆) → (𝜂 ↔ 𝜁)) | |
| 4 | 3 | imbi2d 340 | . . 3 ⊢ (𝐵 = if(𝜓, 𝐵, 𝑆) → (((𝜒 ∧ 𝜃) → 𝜂) ↔ ((𝜒 ∧ 𝜃) → 𝜁))) |
| 5 | dedth4h.3 | . . . 4 ⊢ (𝐶 = if(𝜒, 𝐶, 𝐹) → (𝜁 ↔ 𝜎)) | |
| 6 | dedth4h.4 | . . . 4 ⊢ (𝐷 = if(𝜃, 𝐷, 𝐺) → (𝜎 ↔ 𝜌)) | |
| 7 | dedth4h.5 | . . . 4 ⊢ 𝜌 | |
| 8 | 5, 6, 7 | dedth2h 4565 | . . 3 ⊢ ((𝜒 ∧ 𝜃) → 𝜁) |
| 9 | 2, 4, 8 | dedth2h 4565 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| 10 | 9 | imp 406 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ifcif 4505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-if 4506 |
| This theorem is referenced by: dedth4v 4570 fprg 7150 omopth 8679 nn0opth2 14295 ax5seglem8 28920 hvsubsub4 31046 norm3lemt 31138 eigorth 31824 |
| Copyright terms: Public domain | W3C validator |