MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltweuz Structured version   Visualization version   GIF version

Theorem ltweuz 13962
Description: < is a well-founded relation on any sequence of upper integers. (Contributed by Andrew Salmon, 13-Nov-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
ltweuz < We (ℤ𝐴)

Proof of Theorem ltweuz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordom 7881 . . . . 5 Ord ω
2 ordwe 6384 . . . . 5 (Ord ω → E We ω)
31, 2ax-mp 5 . . . 4 E We ω
4 rdgeq2 8433 . . . . . . . . 9 (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) → rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) = rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)))
54reseq1d 5984 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) → (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω))
6 isoeq1 7324 . . . . . . . 8 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom E , < (ω, (ℤ𝐴)) ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ𝐴))))
75, 6syl 17 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom E , < (ω, (ℤ𝐴)) ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ𝐴))))
8 fveq2 6896 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) → (ℤ𝐴) = (ℤ‘if(𝐴 ∈ ℤ, 𝐴, 0)))
9 isoeq5 7328 . . . . . . . 8 ((ℤ𝐴) = (ℤ‘if(𝐴 ∈ ℤ, 𝐴, 0)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ𝐴)) ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ‘if(𝐴 ∈ ℤ, 𝐴, 0)))))
108, 9syl 17 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ𝐴)) ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ‘if(𝐴 ∈ ℤ, 𝐴, 0)))))
11 0z 12602 . . . . . . . . 9 0 ∈ ℤ
1211elimel 4599 . . . . . . . 8 if(𝐴 ∈ ℤ, 𝐴, 0) ∈ ℤ
13 eqid 2725 . . . . . . . 8 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω)
1412, 13om2uzisoi 13955 . . . . . . 7 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ‘if(𝐴 ∈ ℤ, 𝐴, 0)))
157, 10, 14dedth2v 4592 . . . . . 6 (𝐴 ∈ ℤ → (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom E , < (ω, (ℤ𝐴)))
16 isocnv 7337 . . . . . 6 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom E , < (ω, (ℤ𝐴)) → (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom < , E ((ℤ𝐴), ω))
1715, 16syl 17 . . . . 5 (𝐴 ∈ ℤ → (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom < , E ((ℤ𝐴), ω))
18 dmres 6017 . . . . . . . 8 dom (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) = (ω ∩ dom rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴))
19 omex 9668 . . . . . . . . 9 ω ∈ V
2019inex1 5318 . . . . . . . 8 (ω ∩ dom rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴)) ∈ V
2118, 20eqeltri 2821 . . . . . . 7 dom (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) ∈ V
22 cnvimass 6086 . . . . . . 7 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) “ 𝑦) ⊆ dom (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω)
2321, 22ssexi 5323 . . . . . 6 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) “ 𝑦) ∈ V
2423ax-gen 1789 . . . . 5 𝑦((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) “ 𝑦) ∈ V
25 isowe2 7357 . . . . 5 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom < , E ((ℤ𝐴), ω) ∧ ∀𝑦((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) “ 𝑦) ∈ V) → ( E We ω → < We (ℤ𝐴)))
2617, 24, 25sylancl 584 . . . 4 (𝐴 ∈ ℤ → ( E We ω → < We (ℤ𝐴)))
273, 26mpi 20 . . 3 (𝐴 ∈ ℤ → < We (ℤ𝐴))
28 uzf 12858 . . . 4 :ℤ⟶𝒫 ℤ
2928fdmi 6734 . . 3 dom ℤ = ℤ
3027, 29eleq2s 2843 . 2 (𝐴 ∈ dom ℤ → < We (ℤ𝐴))
31 we0 5673 . . 3 < We ∅
32 ndmfv 6931 . . . 4 𝐴 ∈ dom ℤ → (ℤ𝐴) = ∅)
33 weeq2 5667 . . . 4 ((ℤ𝐴) = ∅ → ( < We (ℤ𝐴) ↔ < We ∅))
3432, 33syl 17 . . 3 𝐴 ∈ dom ℤ → ( < We (ℤ𝐴) ↔ < We ∅))
3531, 34mpbiri 257 . 2 𝐴 ∈ dom ℤ → < We (ℤ𝐴))
3630, 35pm2.61i 182 1 < We (ℤ𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1531   = wceq 1533  wcel 2098  Vcvv 3461  cin 3943  c0 4322  ifcif 4530  𝒫 cpw 4604  cmpt 5232   E cep 5581   We wwe 5632  ccnv 5677  dom cdm 5678  cres 5680  cima 5681  Ord word 6370  cfv 6549   Isom wiso 6550  (class class class)co 7419  ωcom 7871  reccrdg 8430  0cc0 11140  1c1 11141   + caddc 11143   < clt 11280  cz 12591  cuz 12855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-n0 12506  df-z 12592  df-uz 12856
This theorem is referenced by:  ltwenn  13963  ltwefz  13964  uzsinds  13988  bpolylem  16028  ltbwe  22004  dyadmax  25571  omeiunle  46043
  Copyright terms: Public domain W3C validator