MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltweuz Structured version   Visualization version   GIF version

Theorem ltweuz 13324
Description: < is a well-founded relation on any sequence of upper integers. (Contributed by Andrew Salmon, 13-Nov-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
ltweuz < We (ℤ𝐴)

Proof of Theorem ltweuz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordom 7569 . . . . 5 Ord ω
2 ordwe 6172 . . . . 5 (Ord ω → E We ω)
31, 2ax-mp 5 . . . 4 E We ω
4 rdgeq2 8031 . . . . . . . . 9 (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) → rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) = rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)))
54reseq1d 5817 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) → (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω))
6 isoeq1 7049 . . . . . . . 8 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom E , < (ω, (ℤ𝐴)) ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ𝐴))))
75, 6syl 17 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom E , < (ω, (ℤ𝐴)) ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ𝐴))))
8 fveq2 6645 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) → (ℤ𝐴) = (ℤ‘if(𝐴 ∈ ℤ, 𝐴, 0)))
9 isoeq5 7053 . . . . . . . 8 ((ℤ𝐴) = (ℤ‘if(𝐴 ∈ ℤ, 𝐴, 0)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ𝐴)) ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ‘if(𝐴 ∈ ℤ, 𝐴, 0)))))
108, 9syl 17 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ𝐴)) ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ‘if(𝐴 ∈ ℤ, 𝐴, 0)))))
11 0z 11980 . . . . . . . . 9 0 ∈ ℤ
1211elimel 4492 . . . . . . . 8 if(𝐴 ∈ ℤ, 𝐴, 0) ∈ ℤ
13 eqid 2798 . . . . . . . 8 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω)
1412, 13om2uzisoi 13317 . . . . . . 7 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ‘if(𝐴 ∈ ℤ, 𝐴, 0)))
157, 10, 14dedth2v 4485 . . . . . 6 (𝐴 ∈ ℤ → (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom E , < (ω, (ℤ𝐴)))
16 isocnv 7062 . . . . . 6 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom E , < (ω, (ℤ𝐴)) → (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom < , E ((ℤ𝐴), ω))
1715, 16syl 17 . . . . 5 (𝐴 ∈ ℤ → (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom < , E ((ℤ𝐴), ω))
18 dmres 5840 . . . . . . . 8 dom (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) = (ω ∩ dom rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴))
19 omex 9090 . . . . . . . . 9 ω ∈ V
2019inex1 5185 . . . . . . . 8 (ω ∩ dom rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴)) ∈ V
2118, 20eqeltri 2886 . . . . . . 7 dom (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) ∈ V
22 cnvimass 5916 . . . . . . 7 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) “ 𝑦) ⊆ dom (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω)
2321, 22ssexi 5190 . . . . . 6 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) “ 𝑦) ∈ V
2423ax-gen 1797 . . . . 5 𝑦((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) “ 𝑦) ∈ V
25 isowe2 7082 . . . . 5 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom < , E ((ℤ𝐴), ω) ∧ ∀𝑦((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) “ 𝑦) ∈ V) → ( E We ω → < We (ℤ𝐴)))
2617, 24, 25sylancl 589 . . . 4 (𝐴 ∈ ℤ → ( E We ω → < We (ℤ𝐴)))
273, 26mpi 20 . . 3 (𝐴 ∈ ℤ → < We (ℤ𝐴))
28 uzf 12234 . . . 4 :ℤ⟶𝒫 ℤ
2928fdmi 6498 . . 3 dom ℤ = ℤ
3027, 29eleq2s 2908 . 2 (𝐴 ∈ dom ℤ → < We (ℤ𝐴))
31 we0 5514 . . 3 < We ∅
32 ndmfv 6675 . . . 4 𝐴 ∈ dom ℤ → (ℤ𝐴) = ∅)
33 weeq2 5508 . . . 4 ((ℤ𝐴) = ∅ → ( < We (ℤ𝐴) ↔ < We ∅))
3432, 33syl 17 . . 3 𝐴 ∈ dom ℤ → ( < We (ℤ𝐴) ↔ < We ∅))
3531, 34mpbiri 261 . 2 𝐴 ∈ dom ℤ → < We (ℤ𝐴))
3630, 35pm2.61i 185 1 < We (ℤ𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wal 1536   = wceq 1538  wcel 2111  Vcvv 3441  cin 3880  c0 4243  ifcif 4425  𝒫 cpw 4497  cmpt 5110   E cep 5429   We wwe 5477  ccnv 5518  dom cdm 5519  cres 5521  cima 5522  Ord word 6158  cfv 6324   Isom wiso 6325  (class class class)co 7135  ωcom 7560  reccrdg 8028  0cc0 10526  1c1 10527   + caddc 10529   < clt 10664  cz 11969  cuz 12231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232
This theorem is referenced by:  ltwenn  13325  ltwefz  13326  uzsinds  13350  bpolylem  15394  ltbwe  20712  dyadmax  24202  omeiunle  43156
  Copyright terms: Public domain W3C validator