MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltweuz Structured version   Visualization version   GIF version

Theorem ltweuz 13609
Description: < is a well-founded relation on any sequence of upper integers. (Contributed by Andrew Salmon, 13-Nov-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
ltweuz < We (ℤ𝐴)

Proof of Theorem ltweuz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordom 7697 . . . . 5 Ord ω
2 ordwe 6264 . . . . 5 (Ord ω → E We ω)
31, 2ax-mp 5 . . . 4 E We ω
4 rdgeq2 8214 . . . . . . . . 9 (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) → rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) = rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)))
54reseq1d 5879 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) → (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω))
6 isoeq1 7168 . . . . . . . 8 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom E , < (ω, (ℤ𝐴)) ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ𝐴))))
75, 6syl 17 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom E , < (ω, (ℤ𝐴)) ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ𝐴))))
8 fveq2 6756 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) → (ℤ𝐴) = (ℤ‘if(𝐴 ∈ ℤ, 𝐴, 0)))
9 isoeq5 7172 . . . . . . . 8 ((ℤ𝐴) = (ℤ‘if(𝐴 ∈ ℤ, 𝐴, 0)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ𝐴)) ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ‘if(𝐴 ∈ ℤ, 𝐴, 0)))))
108, 9syl 17 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ𝐴)) ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ‘if(𝐴 ∈ ℤ, 𝐴, 0)))))
11 0z 12260 . . . . . . . . 9 0 ∈ ℤ
1211elimel 4525 . . . . . . . 8 if(𝐴 ∈ ℤ, 𝐴, 0) ∈ ℤ
13 eqid 2738 . . . . . . . 8 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω)
1412, 13om2uzisoi 13602 . . . . . . 7 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ‘if(𝐴 ∈ ℤ, 𝐴, 0)))
157, 10, 14dedth2v 4518 . . . . . 6 (𝐴 ∈ ℤ → (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom E , < (ω, (ℤ𝐴)))
16 isocnv 7181 . . . . . 6 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom E , < (ω, (ℤ𝐴)) → (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom < , E ((ℤ𝐴), ω))
1715, 16syl 17 . . . . 5 (𝐴 ∈ ℤ → (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom < , E ((ℤ𝐴), ω))
18 dmres 5902 . . . . . . . 8 dom (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) = (ω ∩ dom rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴))
19 omex 9331 . . . . . . . . 9 ω ∈ V
2019inex1 5236 . . . . . . . 8 (ω ∩ dom rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴)) ∈ V
2118, 20eqeltri 2835 . . . . . . 7 dom (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) ∈ V
22 cnvimass 5978 . . . . . . 7 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) “ 𝑦) ⊆ dom (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω)
2321, 22ssexi 5241 . . . . . 6 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) “ 𝑦) ∈ V
2423ax-gen 1799 . . . . 5 𝑦((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) “ 𝑦) ∈ V
25 isowe2 7201 . . . . 5 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom < , E ((ℤ𝐴), ω) ∧ ∀𝑦((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) “ 𝑦) ∈ V) → ( E We ω → < We (ℤ𝐴)))
2617, 24, 25sylancl 585 . . . 4 (𝐴 ∈ ℤ → ( E We ω → < We (ℤ𝐴)))
273, 26mpi 20 . . 3 (𝐴 ∈ ℤ → < We (ℤ𝐴))
28 uzf 12514 . . . 4 :ℤ⟶𝒫 ℤ
2928fdmi 6596 . . 3 dom ℤ = ℤ
3027, 29eleq2s 2857 . 2 (𝐴 ∈ dom ℤ → < We (ℤ𝐴))
31 we0 5575 . . 3 < We ∅
32 ndmfv 6786 . . . 4 𝐴 ∈ dom ℤ → (ℤ𝐴) = ∅)
33 weeq2 5569 . . . 4 ((ℤ𝐴) = ∅ → ( < We (ℤ𝐴) ↔ < We ∅))
3432, 33syl 17 . . 3 𝐴 ∈ dom ℤ → ( < We (ℤ𝐴) ↔ < We ∅))
3531, 34mpbiri 257 . 2 𝐴 ∈ dom ℤ → < We (ℤ𝐴))
3630, 35pm2.61i 182 1 < We (ℤ𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1537   = wceq 1539  wcel 2108  Vcvv 3422  cin 3882  c0 4253  ifcif 4456  𝒫 cpw 4530  cmpt 5153   E cep 5485   We wwe 5534  ccnv 5579  dom cdm 5580  cres 5582  cima 5583  Ord word 6250  cfv 6418   Isom wiso 6419  (class class class)co 7255  ωcom 7687  reccrdg 8211  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cz 12249  cuz 12511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512
This theorem is referenced by:  ltwenn  13610  ltwefz  13611  uzsinds  13635  bpolylem  15686  ltbwe  21155  dyadmax  24667  omeiunle  43945
  Copyright terms: Public domain W3C validator