Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltweuz Structured version   Visualization version   GIF version

Theorem ltweuz 13332
 Description: < is a well-founded relation on any sequence of upper integers. (Contributed by Andrew Salmon, 13-Nov-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
ltweuz < We (ℤ𝐴)

Proof of Theorem ltweuz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordom 7592 . . . . 5 Ord ω
2 ordwe 6207 . . . . 5 (Ord ω → E We ω)
31, 2ax-mp 5 . . . 4 E We ω
4 rdgeq2 8051 . . . . . . . . 9 (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) → rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) = rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)))
54reseq1d 5855 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) → (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω))
6 isoeq1 7073 . . . . . . . 8 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom E , < (ω, (ℤ𝐴)) ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ𝐴))))
75, 6syl 17 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom E , < (ω, (ℤ𝐴)) ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ𝐴))))
8 fveq2 6673 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) → (ℤ𝐴) = (ℤ‘if(𝐴 ∈ ℤ, 𝐴, 0)))
9 isoeq5 7077 . . . . . . . 8 ((ℤ𝐴) = (ℤ‘if(𝐴 ∈ ℤ, 𝐴, 0)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ𝐴)) ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ‘if(𝐴 ∈ ℤ, 𝐴, 0)))))
108, 9syl 17 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ𝐴)) ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ‘if(𝐴 ∈ ℤ, 𝐴, 0)))))
11 0z 11995 . . . . . . . . 9 0 ∈ ℤ
1211elimel 4537 . . . . . . . 8 if(𝐴 ∈ ℤ, 𝐴, 0) ∈ ℤ
13 eqid 2824 . . . . . . . 8 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω)
1412, 13om2uzisoi 13325 . . . . . . 7 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ‘if(𝐴 ∈ ℤ, 𝐴, 0)))
157, 10, 14dedth2v 4530 . . . . . 6 (𝐴 ∈ ℤ → (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom E , < (ω, (ℤ𝐴)))
16 isocnv 7086 . . . . . 6 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom E , < (ω, (ℤ𝐴)) → (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom < , E ((ℤ𝐴), ω))
1715, 16syl 17 . . . . 5 (𝐴 ∈ ℤ → (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom < , E ((ℤ𝐴), ω))
18 dmres 5878 . . . . . . . 8 dom (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) = (ω ∩ dom rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴))
19 omex 9109 . . . . . . . . 9 ω ∈ V
2019inex1 5224 . . . . . . . 8 (ω ∩ dom rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴)) ∈ V
2118, 20eqeltri 2912 . . . . . . 7 dom (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) ∈ V
22 cnvimass 5952 . . . . . . 7 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) “ 𝑦) ⊆ dom (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω)
2321, 22ssexi 5229 . . . . . 6 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) “ 𝑦) ∈ V
2423ax-gen 1795 . . . . 5 𝑦((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) “ 𝑦) ∈ V
25 isowe2 7106 . . . . 5 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom < , E ((ℤ𝐴), ω) ∧ ∀𝑦((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) “ 𝑦) ∈ V) → ( E We ω → < We (ℤ𝐴)))
2617, 24, 25sylancl 588 . . . 4 (𝐴 ∈ ℤ → ( E We ω → < We (ℤ𝐴)))
273, 26mpi 20 . . 3 (𝐴 ∈ ℤ → < We (ℤ𝐴))
28 uzf 12249 . . . 4 :ℤ⟶𝒫 ℤ
2928fdmi 6527 . . 3 dom ℤ = ℤ
3027, 29eleq2s 2934 . 2 (𝐴 ∈ dom ℤ → < We (ℤ𝐴))
31 we0 5553 . . 3 < We ∅
32 ndmfv 6703 . . . 4 𝐴 ∈ dom ℤ → (ℤ𝐴) = ∅)
33 weeq2 5547 . . . 4 ((ℤ𝐴) = ∅ → ( < We (ℤ𝐴) ↔ < We ∅))
3432, 33syl 17 . . 3 𝐴 ∈ dom ℤ → ( < We (ℤ𝐴) ↔ < We ∅))
3531, 34mpbiri 260 . 2 𝐴 ∈ dom ℤ → < We (ℤ𝐴))
3630, 35pm2.61i 184 1 < We (ℤ𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 208  ∀wal 1534   = wceq 1536   ∈ wcel 2113  Vcvv 3497   ∩ cin 3938  ∅c0 4294  ifcif 4470  𝒫 cpw 4542   ↦ cmpt 5149   E cep 5467   We wwe 5516  ◡ccnv 5557  dom cdm 5558   ↾ cres 5560   “ cima 5561  Ord word 6193  ‘cfv 6358   Isom wiso 6359  (class class class)co 7159  ωcom 7583  reccrdg 8048  0cc0 10540  1c1 10541   + caddc 10543   < clt 10678  ℤcz 11984  ℤ≥cuz 12246 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-n0 11901  df-z 11985  df-uz 12247 This theorem is referenced by:  ltwenn  13333  ltwefz  13334  uzsinds  13358  bpolylem  15405  ltbwe  20256  dyadmax  24202  omeiunle  42806
 Copyright terms: Public domain W3C validator