Proof of Theorem omlsi
Step | Hyp | Ref
| Expression |
1 | | eqeq1 2742 |
. 2
⊢ (𝐴 = if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) → (𝐴 = 𝐵 ↔ if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) = 𝐵)) |
2 | | eqeq2 2750 |
. 2
⊢ (𝐵 = if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐵, 0ℋ) → (if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) = 𝐵 ↔ if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) = if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐵, 0ℋ))) |
3 | | omls.1 |
. . . 4
⊢ 𝐴 ∈
Cℋ |
4 | | h0elch 29518 |
. . . 4
⊢
0ℋ ∈
Cℋ |
5 | 3, 4 | ifcli 4503 |
. . 3
⊢ if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) ∈
Cℋ |
6 | | omls.2 |
. . . 4
⊢ 𝐵 ∈
Sℋ |
7 | | h0elsh 29519 |
. . . 4
⊢
0ℋ ∈
Sℋ |
8 | 6, 7 | ifcli 4503 |
. . 3
⊢ if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐵, 0ℋ) ∈
Sℋ |
9 | | sseq1 3942 |
. . . . . 6
⊢ (𝐴 = if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) → (𝐴 ⊆ 𝐵 ↔ if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) ⊆ 𝐵)) |
10 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝐴 = if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) →
(⊥‘𝐴) =
(⊥‘if((𝐴
⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴,
0ℋ))) |
11 | 10 | ineq2d 4143 |
. . . . . . 7
⊢ (𝐴 = if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) → (𝐵 ∩ (⊥‘𝐴)) = (𝐵 ∩ (⊥‘if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ)))) |
12 | 11 | eqeq1d 2740 |
. . . . . 6
⊢ (𝐴 = if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) → ((𝐵 ∩ (⊥‘𝐴)) = 0ℋ ↔
(𝐵 ∩
(⊥‘if((𝐴
⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ))) =
0ℋ)) |
13 | 9, 12 | anbi12d 630 |
. . . . 5
⊢ (𝐴 = if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) → ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ) ↔ (if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ))) =
0ℋ))) |
14 | | sseq2 3943 |
. . . . . 6
⊢ (𝐵 = if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐵, 0ℋ) → (if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) ⊆ 𝐵 ↔ if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) ⊆ if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐵, 0ℋ))) |
15 | | ineq1 4136 |
. . . . . . 7
⊢ (𝐵 = if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐵, 0ℋ) → (𝐵 ∩ (⊥‘if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ))) = (if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐵, 0ℋ) ∩
(⊥‘if((𝐴
⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴,
0ℋ)))) |
16 | 15 | eqeq1d 2740 |
. . . . . 6
⊢ (𝐵 = if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐵, 0ℋ) → ((𝐵 ∩ (⊥‘if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ))) =
0ℋ ↔ (if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐵, 0ℋ) ∩
(⊥‘if((𝐴
⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ))) =
0ℋ)) |
17 | 14, 16 | anbi12d 630 |
. . . . 5
⊢ (𝐵 = if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐵, 0ℋ) → ((if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ))) =
0ℋ) ↔ (if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) ⊆ if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐵, 0ℋ) ∧ (if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐵, 0ℋ) ∩
(⊥‘if((𝐴
⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ))) =
0ℋ))) |
18 | | sseq1 3942 |
. . . . . 6
⊢
(0ℋ = if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) →
(0ℋ ⊆ 0ℋ ↔ if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) ⊆
0ℋ)) |
19 | | fveq2 6756 |
. . . . . . . 8
⊢
(0ℋ = if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) →
(⊥‘0ℋ) = (⊥‘if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ))) |
20 | 19 | ineq2d 4143 |
. . . . . . 7
⊢
(0ℋ = if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) →
(0ℋ ∩ (⊥‘0ℋ)) =
(0ℋ ∩ (⊥‘if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ)))) |
21 | 20 | eqeq1d 2740 |
. . . . . 6
⊢
(0ℋ = if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) →
((0ℋ ∩ (⊥‘0ℋ)) =
0ℋ ↔ (0ℋ ∩ (⊥‘if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ))) =
0ℋ)) |
22 | 18, 21 | anbi12d 630 |
. . . . 5
⊢
(0ℋ = if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) →
((0ℋ ⊆ 0ℋ ∧ (0ℋ
∩ (⊥‘0ℋ)) = 0ℋ) ↔
(if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) ⊆
0ℋ ∧ (0ℋ ∩ (⊥‘if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ))) =
0ℋ))) |
23 | | sseq2 3943 |
. . . . . 6
⊢
(0ℋ = if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐵, 0ℋ) → (if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) ⊆
0ℋ ↔ if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) ⊆ if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐵, 0ℋ))) |
24 | | ineq1 4136 |
. . . . . . 7
⊢
(0ℋ = if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐵, 0ℋ) →
(0ℋ ∩ (⊥‘if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ))) = (if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐵, 0ℋ) ∩
(⊥‘if((𝐴
⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴,
0ℋ)))) |
25 | 24 | eqeq1d 2740 |
. . . . . 6
⊢
(0ℋ = if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐵, 0ℋ) →
((0ℋ ∩ (⊥‘if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ))) =
0ℋ ↔ (if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐵, 0ℋ) ∩
(⊥‘if((𝐴
⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ))) =
0ℋ)) |
26 | 23, 25 | anbi12d 630 |
. . . . 5
⊢
(0ℋ = if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐵, 0ℋ) → ((if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) ⊆
0ℋ ∧ (0ℋ ∩ (⊥‘if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ))) =
0ℋ) ↔ (if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) ⊆ if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐵, 0ℋ) ∧ (if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐵, 0ℋ) ∩
(⊥‘if((𝐴
⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ))) =
0ℋ))) |
27 | | ssid 3939 |
. . . . . 6
⊢
0ℋ ⊆ 0ℋ |
28 | | ocin 29559 |
. . . . . . 7
⊢
(0ℋ ∈ Sℋ →
(0ℋ ∩ (⊥‘0ℋ)) =
0ℋ) |
29 | 7, 28 | ax-mp 5 |
. . . . . 6
⊢
(0ℋ ∩ (⊥‘0ℋ)) =
0ℋ |
30 | 27, 29 | pm3.2i 470 |
. . . . 5
⊢
(0ℋ ⊆ 0ℋ ∧
(0ℋ ∩ (⊥‘0ℋ)) =
0ℋ) |
31 | 13, 17, 22, 26, 30 | elimhyp2v 4522 |
. . . 4
⊢
(if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) ⊆ if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐵, 0ℋ) ∧ (if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐵, 0ℋ) ∩
(⊥‘if((𝐴
⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ))) =
0ℋ) |
32 | 31 | simpli 483 |
. . 3
⊢ if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) ⊆ if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐵, 0ℋ) |
33 | 31 | simpri 485 |
. . 3
⊢
(if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐵, 0ℋ) ∩
(⊥‘if((𝐴
⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ))) =
0ℋ |
34 | 5, 8, 32, 33 | omlsii 29666 |
. 2
⊢ if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐴, 0ℋ) = if((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ), 𝐵, 0ℋ) |
35 | 1, 2, 34 | dedth2v 4518 |
1
⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ) → 𝐴 = 𝐵) |