MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-slot Structured version   Visualization version   GIF version

Definition df-slot 16811
Description: Define the slot extractor for extensible structures. The class Slot 𝐴 is a function whose argument can be any set, although it is meaningful only if that set is a member of an extensible structure (such as a partially ordered set (df-poset 17946) or a group (df-grp 18495)).

Note that Slot 𝐴 is implemented as "evaluation at 𝐴". That is, (Slot 𝐴𝑆) is defined to be (𝑆𝐴), where 𝐴 will typically be a small nonzero natural number. Each extensible structure 𝑆 is a function defined on specific natural number "slots", and this function extracts the value at a particular slot.

The special "structure" ndx, defined as the identity function restricted to , can be used to extract the number 𝐴 from a slot, since (Slot 𝐴‘ndx) = 𝐴 (see ndxarg 16825). This is typically used to refer to the number of a slot when defining structures without having to expose the detail of what that number is (for instance, we use the expression (Base‘ndx) in theorems and proofs instead of its value 1).

The class Slot cannot be defined as (𝑥 ∈ V ↦ (𝑓 ∈ V ↦ (𝑓𝑥))) because each Slot 𝐴 is a function on the proper class V so is itself a proper class, and the values of functions are sets (fvex 6769). It is necessary to allow proper classes as values of Slot 𝐴 since for instance the class of all (base sets of) groups is proper. (Contributed by Mario Carneiro, 22-Sep-2015.)

Assertion
Ref Expression
df-slot Slot 𝐴 = (𝑥 ∈ V ↦ (𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Detailed syntax breakdown of Definition df-slot
StepHypRef Expression
1 cA . . 3 class 𝐴
21cslot 16810 . 2 class Slot 𝐴
3 vx . . 3 setvar 𝑥
4 cvv 3422 . . 3 class V
53cv 1538 . . . 4 class 𝑥
61, 5cfv 6418 . . 3 class (𝑥𝐴)
73, 4, 6cmpt 5153 . 2 class (𝑥 ∈ V ↦ (𝑥𝐴))
82, 7wceq 1539 1 wff Slot 𝐴 = (𝑥 ∈ V ↦ (𝑥𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  sloteq  16812  slotfn  16813  strfvnd  16814  bj-evaleq  35170  bj-evalfun  35171  bj-evalfn  35172  bj-evalval  35173
  Copyright terms: Public domain W3C validator