MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strfvnd Structured version   Visualization version   GIF version

Theorem strfvnd 17093
Description: Deduction version of strfvn 17094. (Contributed by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
strfvnd.c 𝐸 = Slot 𝑁
strfvnd.f (𝜑𝑆𝑉)
Assertion
Ref Expression
strfvnd (𝜑 → (𝐸𝑆) = (𝑆𝑁))

Proof of Theorem strfvnd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 strfvnd.f . 2 (𝜑𝑆𝑉)
2 elex 3457 . 2 (𝑆𝑉𝑆 ∈ V)
3 fveq1 6821 . . 3 (𝑥 = 𝑆 → (𝑥𝑁) = (𝑆𝑁))
4 strfvnd.c . . . 4 𝐸 = Slot 𝑁
5 df-slot 17090 . . . 4 Slot 𝑁 = (𝑥 ∈ V ↦ (𝑥𝑁))
64, 5eqtri 2754 . . 3 𝐸 = (𝑥 ∈ V ↦ (𝑥𝑁))
7 fvex 6835 . . 3 (𝑆𝑁) ∈ V
83, 6, 7fvmpt 6929 . 2 (𝑆 ∈ V → (𝐸𝑆) = (𝑆𝑁))
91, 2, 83syl 18 1 (𝜑 → (𝐸𝑆) = (𝑆𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  cmpt 5172  cfv 6481  Slot cslot 17089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-slot 17090
This theorem is referenced by:  strfvn  17094  strfvss  17095  strndxid  17106  setsidvald  17107  strfvd  17108  strfv2d  17109  setsid  17115  setsnid  17116  estrreslem1  18040  edgfndxid  28969  bj-endbase  37349  bj-endcomp  37350
  Copyright terms: Public domain W3C validator