| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > strfvnd | Structured version Visualization version GIF version | ||
| Description: Deduction version of strfvn 17099. (Contributed by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| strfvnd.c | ⊢ 𝐸 = Slot 𝑁 |
| strfvnd.f | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| strfvnd | ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfvnd.f | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 2 | elex 3458 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
| 3 | fveq1 6827 | . . 3 ⊢ (𝑥 = 𝑆 → (𝑥‘𝑁) = (𝑆‘𝑁)) | |
| 4 | strfvnd.c | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
| 5 | df-slot 17095 | . . . 4 ⊢ Slot 𝑁 = (𝑥 ∈ V ↦ (𝑥‘𝑁)) | |
| 6 | 4, 5 | eqtri 2756 | . . 3 ⊢ 𝐸 = (𝑥 ∈ V ↦ (𝑥‘𝑁)) |
| 7 | fvex 6841 | . . 3 ⊢ (𝑆‘𝑁) ∈ V | |
| 8 | 3, 6, 7 | fvmpt 6935 | . 2 ⊢ (𝑆 ∈ V → (𝐸‘𝑆) = (𝑆‘𝑁)) |
| 9 | 1, 2, 8 | 3syl 18 | 1 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ↦ cmpt 5174 ‘cfv 6486 Slot cslot 17094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-slot 17095 |
| This theorem is referenced by: strfvn 17099 strfvss 17100 strndxid 17111 setsidvald 17112 strfvd 17113 strfv2d 17114 setsid 17120 setsnid 17121 estrreslem1 18045 edgfndxid 28973 bj-endbase 37381 bj-endcomp 37382 |
| Copyright terms: Public domain | W3C validator |