| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > strfvnd | Structured version Visualization version GIF version | ||
| Description: Deduction version of strfvn 17163. (Contributed by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| strfvnd.c | ⊢ 𝐸 = Slot 𝑁 |
| strfvnd.f | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| strfvnd | ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfvnd.f | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 2 | elex 3471 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
| 3 | fveq1 6860 | . . 3 ⊢ (𝑥 = 𝑆 → (𝑥‘𝑁) = (𝑆‘𝑁)) | |
| 4 | strfvnd.c | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
| 5 | df-slot 17159 | . . . 4 ⊢ Slot 𝑁 = (𝑥 ∈ V ↦ (𝑥‘𝑁)) | |
| 6 | 4, 5 | eqtri 2753 | . . 3 ⊢ 𝐸 = (𝑥 ∈ V ↦ (𝑥‘𝑁)) |
| 7 | fvex 6874 | . . 3 ⊢ (𝑆‘𝑁) ∈ V | |
| 8 | 3, 6, 7 | fvmpt 6971 | . 2 ⊢ (𝑆 ∈ V → (𝐸‘𝑆) = (𝑆‘𝑁)) |
| 9 | 1, 2, 8 | 3syl 18 | 1 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ↦ cmpt 5191 ‘cfv 6514 Slot cslot 17158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-slot 17159 |
| This theorem is referenced by: strfvn 17163 strfvss 17164 strndxid 17175 setsidvald 17176 strfvd 17177 strfv2d 17178 setsid 17184 setsnid 17185 estrreslem1 18105 edgfndxid 28927 bj-endbase 37311 bj-endcomp 37312 |
| Copyright terms: Public domain | W3C validator |