MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strfvnd Structured version   Visualization version   GIF version

Theorem strfvnd 17098
Description: Deduction version of strfvn 17099. (Contributed by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
strfvnd.c 𝐸 = Slot 𝑁
strfvnd.f (𝜑𝑆𝑉)
Assertion
Ref Expression
strfvnd (𝜑 → (𝐸𝑆) = (𝑆𝑁))

Proof of Theorem strfvnd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 strfvnd.f . 2 (𝜑𝑆𝑉)
2 elex 3458 . 2 (𝑆𝑉𝑆 ∈ V)
3 fveq1 6827 . . 3 (𝑥 = 𝑆 → (𝑥𝑁) = (𝑆𝑁))
4 strfvnd.c . . . 4 𝐸 = Slot 𝑁
5 df-slot 17095 . . . 4 Slot 𝑁 = (𝑥 ∈ V ↦ (𝑥𝑁))
64, 5eqtri 2756 . . 3 𝐸 = (𝑥 ∈ V ↦ (𝑥𝑁))
7 fvex 6841 . . 3 (𝑆𝑁) ∈ V
83, 6, 7fvmpt 6935 . 2 (𝑆 ∈ V → (𝐸𝑆) = (𝑆𝑁))
91, 2, 83syl 18 1 (𝜑 → (𝐸𝑆) = (𝑆𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  cmpt 5174  cfv 6486  Slot cslot 17094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-slot 17095
This theorem is referenced by:  strfvn  17099  strfvss  17100  strndxid  17111  setsidvald  17112  strfvd  17113  strfv2d  17114  setsid  17120  setsnid  17121  estrreslem1  18045  edgfndxid  28973  bj-endbase  37381  bj-endcomp  37382
  Copyright terms: Public domain W3C validator