![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strfvnd | Structured version Visualization version GIF version |
Description: Deduction version of strfvn 17233. (Contributed by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
strfvnd.c | ⊢ 𝐸 = Slot 𝑁 |
strfvnd.f | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
Ref | Expression |
---|---|
strfvnd | ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfvnd.f | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
2 | elex 3509 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
3 | fveq1 6919 | . . 3 ⊢ (𝑥 = 𝑆 → (𝑥‘𝑁) = (𝑆‘𝑁)) | |
4 | strfvnd.c | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
5 | df-slot 17229 | . . . 4 ⊢ Slot 𝑁 = (𝑥 ∈ V ↦ (𝑥‘𝑁)) | |
6 | 4, 5 | eqtri 2768 | . . 3 ⊢ 𝐸 = (𝑥 ∈ V ↦ (𝑥‘𝑁)) |
7 | fvex 6933 | . . 3 ⊢ (𝑆‘𝑁) ∈ V | |
8 | 3, 6, 7 | fvmpt 7029 | . 2 ⊢ (𝑆 ∈ V → (𝐸‘𝑆) = (𝑆‘𝑁)) |
9 | 1, 2, 8 | 3syl 18 | 1 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ↦ cmpt 5249 ‘cfv 6573 Slot cslot 17228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-slot 17229 |
This theorem is referenced by: strfvn 17233 strfvss 17234 strndxid 17245 setsidvald 17246 setsidvaldOLD 17247 strfvd 17248 strfv2d 17249 setsid 17255 setsnid 17256 setsnidOLD 17257 estrreslem1 18205 edgfndxid 29026 bj-endbase 37282 bj-endcomp 37283 |
Copyright terms: Public domain | W3C validator |