Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > strfvnd | Structured version Visualization version GIF version |
Description: Deduction version of strfvn 16957. (Contributed by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
strfvnd.c | ⊢ 𝐸 = Slot 𝑁 |
strfvnd.f | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
Ref | Expression |
---|---|
strfvnd | ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfvnd.f | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
2 | elex 3459 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
3 | fveq1 6810 | . . 3 ⊢ (𝑥 = 𝑆 → (𝑥‘𝑁) = (𝑆‘𝑁)) | |
4 | strfvnd.c | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
5 | df-slot 16953 | . . . 4 ⊢ Slot 𝑁 = (𝑥 ∈ V ↦ (𝑥‘𝑁)) | |
6 | 4, 5 | eqtri 2765 | . . 3 ⊢ 𝐸 = (𝑥 ∈ V ↦ (𝑥‘𝑁)) |
7 | fvex 6824 | . . 3 ⊢ (𝑆‘𝑁) ∈ V | |
8 | 3, 6, 7 | fvmpt 6914 | . 2 ⊢ (𝑆 ∈ V → (𝐸‘𝑆) = (𝑆‘𝑁)) |
9 | 1, 2, 8 | 3syl 18 | 1 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ↦ cmpt 5170 ‘cfv 6465 Slot cslot 16952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-iota 6417 df-fun 6467 df-fv 6473 df-slot 16953 |
This theorem is referenced by: strfvn 16957 strfvss 16958 strndxid 16969 setsidvald 16970 setsidvaldOLD 16971 strfvd 16972 strfv2d 16973 setsid 16979 setsnid 16980 setsnidOLD 16981 estrreslem1 17923 edgfndxid 27470 bj-endbase 35543 bj-endcomp 35544 |
Copyright terms: Public domain | W3C validator |