MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strfvnd Structured version   Visualization version   GIF version

Theorem strfvnd 16956
Description: Deduction version of strfvn 16957. (Contributed by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
strfvnd.c 𝐸 = Slot 𝑁
strfvnd.f (𝜑𝑆𝑉)
Assertion
Ref Expression
strfvnd (𝜑 → (𝐸𝑆) = (𝑆𝑁))

Proof of Theorem strfvnd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 strfvnd.f . 2 (𝜑𝑆𝑉)
2 elex 3459 . 2 (𝑆𝑉𝑆 ∈ V)
3 fveq1 6810 . . 3 (𝑥 = 𝑆 → (𝑥𝑁) = (𝑆𝑁))
4 strfvnd.c . . . 4 𝐸 = Slot 𝑁
5 df-slot 16953 . . . 4 Slot 𝑁 = (𝑥 ∈ V ↦ (𝑥𝑁))
64, 5eqtri 2765 . . 3 𝐸 = (𝑥 ∈ V ↦ (𝑥𝑁))
7 fvex 6824 . . 3 (𝑆𝑁) ∈ V
83, 6, 7fvmpt 6914 . 2 (𝑆 ∈ V → (𝐸𝑆) = (𝑆𝑁))
91, 2, 83syl 18 1 (𝜑 → (𝐸𝑆) = (𝑆𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  Vcvv 3441  cmpt 5170  cfv 6465  Slot cslot 16952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-iota 6417  df-fun 6467  df-fv 6473  df-slot 16953
This theorem is referenced by:  strfvn  16957  strfvss  16958  strndxid  16969  setsidvald  16970  setsidvaldOLD  16971  strfvd  16972  strfv2d  16973  setsid  16979  setsnid  16980  setsnidOLD  16981  estrreslem1  17923  edgfndxid  27470  bj-endbase  35543  bj-endcomp  35544
  Copyright terms: Public domain W3C validator