| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > strfvnd | Structured version Visualization version GIF version | ||
| Description: Deduction version of strfvn 17115. (Contributed by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| strfvnd.c | ⊢ 𝐸 = Slot 𝑁 |
| strfvnd.f | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| strfvnd | ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfvnd.f | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 2 | elex 3459 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
| 3 | fveq1 6825 | . . 3 ⊢ (𝑥 = 𝑆 → (𝑥‘𝑁) = (𝑆‘𝑁)) | |
| 4 | strfvnd.c | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
| 5 | df-slot 17111 | . . . 4 ⊢ Slot 𝑁 = (𝑥 ∈ V ↦ (𝑥‘𝑁)) | |
| 6 | 4, 5 | eqtri 2752 | . . 3 ⊢ 𝐸 = (𝑥 ∈ V ↦ (𝑥‘𝑁)) |
| 7 | fvex 6839 | . . 3 ⊢ (𝑆‘𝑁) ∈ V | |
| 8 | 3, 6, 7 | fvmpt 6934 | . 2 ⊢ (𝑆 ∈ V → (𝐸‘𝑆) = (𝑆‘𝑁)) |
| 9 | 1, 2, 8 | 3syl 18 | 1 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ↦ cmpt 5176 ‘cfv 6486 Slot cslot 17110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-slot 17111 |
| This theorem is referenced by: strfvn 17115 strfvss 17116 strndxid 17127 setsidvald 17128 strfvd 17129 strfv2d 17130 setsid 17136 setsnid 17137 estrreslem1 18061 edgfndxid 28956 bj-endbase 37289 bj-endcomp 37290 |
| Copyright terms: Public domain | W3C validator |