| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > strfvnd | Structured version Visualization version GIF version | ||
| Description: Deduction version of strfvn 17205. (Contributed by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| strfvnd.c | ⊢ 𝐸 = Slot 𝑁 |
| strfvnd.f | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| strfvnd | ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfvnd.f | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 2 | elex 3480 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
| 3 | fveq1 6875 | . . 3 ⊢ (𝑥 = 𝑆 → (𝑥‘𝑁) = (𝑆‘𝑁)) | |
| 4 | strfvnd.c | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
| 5 | df-slot 17201 | . . . 4 ⊢ Slot 𝑁 = (𝑥 ∈ V ↦ (𝑥‘𝑁)) | |
| 6 | 4, 5 | eqtri 2758 | . . 3 ⊢ 𝐸 = (𝑥 ∈ V ↦ (𝑥‘𝑁)) |
| 7 | fvex 6889 | . . 3 ⊢ (𝑆‘𝑁) ∈ V | |
| 8 | 3, 6, 7 | fvmpt 6986 | . 2 ⊢ (𝑆 ∈ V → (𝐸‘𝑆) = (𝑆‘𝑁)) |
| 9 | 1, 2, 8 | 3syl 18 | 1 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ↦ cmpt 5201 ‘cfv 6531 Slot cslot 17200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-slot 17201 |
| This theorem is referenced by: strfvn 17205 strfvss 17206 strndxid 17217 setsidvald 17218 strfvd 17219 strfv2d 17220 setsid 17226 setsnid 17227 estrreslem1 18149 edgfndxid 28972 bj-endbase 37334 bj-endcomp 37335 |
| Copyright terms: Public domain | W3C validator |