MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slotfn Structured version   Visualization version   GIF version

Theorem slotfn 17105
Description: A slot is a function on sets, treated as structures. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypothesis
Ref Expression
strfvnd.c 𝐸 = Slot 𝑁
Assertion
Ref Expression
slotfn 𝐸 Fn V

Proof of Theorem slotfn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvex 6844 . 2 (𝑥𝑁) ∈ V
2 strfvnd.c . . 3 𝐸 = Slot 𝑁
3 df-slot 17103 . . 3 Slot 𝑁 = (𝑥 ∈ V ↦ (𝑥𝑁))
42, 3eqtri 2756 . 2 𝐸 = (𝑥 ∈ V ↦ (𝑥𝑁))
51, 4fnmpti 6632 1 𝐸 Fn V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Vcvv 3438  cmpt 5176   Fn wfn 6484  cfv 6489  Slot cslot 17102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fn 6492  df-fv 6497  df-slot 17103
This theorem is referenced by:  basfn  17134  bj-isrvec  37349
  Copyright terms: Public domain W3C validator