MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slotfn Structured version   Visualization version   GIF version

Theorem slotfn 17153
Description: A slot is a function on sets, treated as structures. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypothesis
Ref Expression
strfvnd.c 𝐸 = Slot 𝑁
Assertion
Ref Expression
slotfn 𝐸 Fn V

Proof of Theorem slotfn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvex 6910 . 2 (𝑥𝑁) ∈ V
2 strfvnd.c . . 3 𝐸 = Slot 𝑁
3 df-slot 17151 . . 3 Slot 𝑁 = (𝑥 ∈ V ↦ (𝑥𝑁))
42, 3eqtri 2756 . 2 𝐸 = (𝑥 ∈ V ↦ (𝑥𝑁))
51, 4fnmpti 6698 1 𝐸 Fn V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  Vcvv 3471  cmpt 5231   Fn wfn 6543  cfv 6548  Slot cslot 17150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6500  df-fun 6550  df-fn 6551  df-fv 6556  df-slot 17151
This theorem is referenced by:  basfn  17184  bj-isrvec  36773
  Copyright terms: Public domain W3C validator