![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slotfn | Structured version Visualization version GIF version |
Description: A slot is a function on sets, treated as structures. (Contributed by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
strfvnd.c | ⊢ 𝐸 = Slot 𝑁 |
Ref | Expression |
---|---|
slotfn | ⊢ 𝐸 Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6424 | . 2 ⊢ (𝑥‘𝑁) ∈ V | |
2 | strfvnd.c | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
3 | df-slot 16188 | . . 3 ⊢ Slot 𝑁 = (𝑥 ∈ V ↦ (𝑥‘𝑁)) | |
4 | 2, 3 | eqtri 2821 | . 2 ⊢ 𝐸 = (𝑥 ∈ V ↦ (𝑥‘𝑁)) |
5 | 1, 4 | fnmpti 6233 | 1 ⊢ 𝐸 Fn V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 Vcvv 3385 ↦ cmpt 4922 Fn wfn 6096 ‘cfv 6101 Slot cslot 16183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-iota 6064 df-fun 6103 df-fn 6104 df-fv 6109 df-slot 16188 |
This theorem is referenced by: basfn 16204 bascnvimaeqv 17075 |
Copyright terms: Public domain | W3C validator |