Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ndxid | Structured version Visualization version GIF version |
Description: A structure component
extractor is defined by its own index. This
theorem, together with strfv 16833 below, is useful for avoiding direct
reference to the hard-coded numeric index in component extractor
definitions, such as the 1 in df-base 16841 and the ;10 in
df-ple 16908, making it easier to change should the need
arise.
For example, we can refer to a specific poset with base set 𝐵 and order relation 𝐿 using {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), 𝐿〉} rather than {〈1, 𝐵〉, 〈;10, 𝐿〉}. The latter, while shorter to state, requires revision if we later change ;10 to some other number, and it may also be harder to remember. (Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.) |
Ref | Expression |
---|---|
ndxarg.e | ⊢ 𝐸 = Slot 𝑁 |
ndxarg.n | ⊢ 𝑁 ∈ ℕ |
Ref | Expression |
---|---|
ndxid | ⊢ 𝐸 = Slot (𝐸‘ndx) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndxarg.e | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
2 | ndxarg.n | . . . 4 ⊢ 𝑁 ∈ ℕ | |
3 | 1, 2 | ndxarg 16825 | . . 3 ⊢ (𝐸‘ndx) = 𝑁 |
4 | 3 | eqcomi 2747 | . 2 ⊢ 𝑁 = (𝐸‘ndx) |
5 | sloteq 16812 | . . 3 ⊢ (𝑁 = (𝐸‘ndx) → Slot 𝑁 = Slot (𝐸‘ndx)) | |
6 | 1, 5 | eqtrid 2790 | . 2 ⊢ (𝑁 = (𝐸‘ndx) → 𝐸 = Slot (𝐸‘ndx)) |
7 | 4, 6 | ax-mp 5 | 1 ⊢ 𝐸 = Slot (𝐸‘ndx) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ‘cfv 6418 ℕcn 11903 Slot cslot 16810 ndxcnx 16822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 df-slot 16811 df-ndx 16823 |
This theorem is referenced by: strndxid 16827 setsidvaldOLD 16829 baseid 16843 2strop 16862 2strop1 16866 resslemOLD 16878 plusgid 16915 mulrid 16930 starvid 16939 scaid 16951 vscaid 16956 ipid 16967 tsetid 16988 pleid 17001 ocid 17015 dsid 17017 unifid 17026 homid 17041 ccoid 17043 oppglemOLD 18870 mgplemOLD 19640 opprlemOLD 19783 sralemOLD 20355 zlmlemOLD 20631 znbaslemOLD 20655 opsrbaslemOLD 21161 tnglemOLD 23703 itvid 26705 lngid 26706 ttglemOLD 27142 cchhllemOLD 27158 edgfid 27261 resvlemOLD 31433 hlhilslemOLD 39880 mnringnmulrdOLD 41717 |
Copyright terms: Public domain | W3C validator |