MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndxid Structured version   Visualization version   GIF version

Theorem ndxid 17127
Description: A structure component extractor is defined by its own index. This theorem, together with strfv 17133 below, is useful for avoiding direct reference to the hard-coded numeric index in component extractor definitions, such as the 1 in df-base 17140 and the 10 in df-ple 17200, making it easier to change should the need arise.

For example, we can refer to a specific poset with base set 𝐵 and order relation 𝐿 using {⟨(Base‘ndx), 𝐵⟩, ⟨(le‘ndx), 𝐿⟩} rather than {⟨1, 𝐵⟩, 10, 𝐿⟩}. The latter, while shorter to state, requires revision if we later change 10 to some other number, and it may also be harder to remember. (Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.)

Hypotheses
Ref Expression
ndxarg.e 𝐸 = Slot 𝑁
ndxarg.n 𝑁 ∈ ℕ
Assertion
Ref Expression
ndxid 𝐸 = Slot (𝐸‘ndx)

Proof of Theorem ndxid
StepHypRef Expression
1 ndxarg.e . . . 4 𝐸 = Slot 𝑁
2 ndxarg.n . . . 4 𝑁 ∈ ℕ
31, 2ndxarg 17126 . . 3 (𝐸‘ndx) = 𝑁
43eqcomi 2738 . 2 𝑁 = (𝐸‘ndx)
5 sloteq 17113 . . 3 (𝑁 = (𝐸‘ndx) → Slot 𝑁 = Slot (𝐸‘ndx))
61, 5eqtrid 2776 . 2 (𝑁 = (𝐸‘ndx) → 𝐸 = Slot (𝐸‘ndx))
74, 6ax-mp 5 1 𝐸 = Slot (𝐸‘ndx)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  cfv 6486  cn 12147  Slot cslot 17111  ndxcnx 17123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-1cn 11086  ax-addcl 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-nn 12148  df-slot 17112  df-ndx 17124
This theorem is referenced by:  strndxid  17128  baseid  17142  2strop  17159  plusgid  17207  mulridx  17218  starvid  17226  scaid  17238  vscaid  17243  ipid  17254  tsetid  17276  pleid  17290  ocid  17305  dsid  17309  unifid  17319  homid  17335  ccoid  17337  itvid  28403  lngid  28404  edgfid  28954  eufid  33249
  Copyright terms: Public domain W3C validator