| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ndxid | Structured version Visualization version GIF version | ||
| Description: A structure component
extractor is defined by its own index. This
theorem, together with strfv 17180 below, is useful for avoiding direct
reference to the hard-coded numeric index in component extractor
definitions, such as the 1 in df-base 17187 and the ;10 in
df-ple 17247, making it easier to change should the need
arise.
For example, we can refer to a specific poset with base set 𝐵 and order relation 𝐿 using {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), 𝐿〉} rather than {〈1, 𝐵〉, 〈;10, 𝐿〉}. The latter, while shorter to state, requires revision if we later change ;10 to some other number, and it may also be harder to remember. (Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.) |
| Ref | Expression |
|---|---|
| ndxarg.e | ⊢ 𝐸 = Slot 𝑁 |
| ndxarg.n | ⊢ 𝑁 ∈ ℕ |
| Ref | Expression |
|---|---|
| ndxid | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndxarg.e | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
| 2 | ndxarg.n | . . . 4 ⊢ 𝑁 ∈ ℕ | |
| 3 | 1, 2 | ndxarg 17173 | . . 3 ⊢ (𝐸‘ndx) = 𝑁 |
| 4 | 3 | eqcomi 2739 | . 2 ⊢ 𝑁 = (𝐸‘ndx) |
| 5 | sloteq 17160 | . . 3 ⊢ (𝑁 = (𝐸‘ndx) → Slot 𝑁 = Slot (𝐸‘ndx)) | |
| 6 | 1, 5 | eqtrid 2777 | . 2 ⊢ (𝑁 = (𝐸‘ndx) → 𝐸 = Slot (𝐸‘ndx)) |
| 7 | 4, 6 | ax-mp 5 | 1 ⊢ 𝐸 = Slot (𝐸‘ndx) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ‘cfv 6514 ℕcn 12193 Slot cslot 17158 ndxcnx 17170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 df-slot 17159 df-ndx 17171 |
| This theorem is referenced by: strndxid 17175 baseid 17189 2strop 17206 plusgid 17254 mulridx 17265 starvid 17273 scaid 17285 vscaid 17290 ipid 17301 tsetid 17323 pleid 17337 ocid 17352 dsid 17356 unifid 17366 homid 17382 ccoid 17384 itvid 28373 lngid 28374 edgfid 28924 eufid 33248 |
| Copyright terms: Public domain | W3C validator |