MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndxid Structured version   Visualization version   GIF version

Theorem ndxid 17231
Description: A structure component extractor is defined by its own index. This theorem, together with strfv 17238 below, is useful for avoiding direct reference to the hard-coded numeric index in component extractor definitions, such as the 1 in df-base 17246 and the 10 in df-ple 17318, making it easier to change should the need arise.

For example, we can refer to a specific poset with base set 𝐵 and order relation 𝐿 using {⟨(Base‘ndx), 𝐵⟩, ⟨(le‘ndx), 𝐿⟩} rather than {⟨1, 𝐵⟩, 10, 𝐿⟩}. The latter, while shorter to state, requires revision if we later change 10 to some other number, and it may also be harder to remember. (Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.)

Hypotheses
Ref Expression
ndxarg.e 𝐸 = Slot 𝑁
ndxarg.n 𝑁 ∈ ℕ
Assertion
Ref Expression
ndxid 𝐸 = Slot (𝐸‘ndx)

Proof of Theorem ndxid
StepHypRef Expression
1 ndxarg.e . . . 4 𝐸 = Slot 𝑁
2 ndxarg.n . . . 4 𝑁 ∈ ℕ
31, 2ndxarg 17230 . . 3 (𝐸‘ndx) = 𝑁
43eqcomi 2744 . 2 𝑁 = (𝐸‘ndx)
5 sloteq 17217 . . 3 (𝑁 = (𝐸‘ndx) → Slot 𝑁 = Slot (𝐸‘ndx))
61, 5eqtrid 2787 . 2 (𝑁 = (𝐸‘ndx) → 𝐸 = Slot (𝐸‘ndx))
74, 6ax-mp 5 1 𝐸 = Slot (𝐸‘ndx)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2106  cfv 6563  cn 12264  Slot cslot 17215  ndxcnx 17227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-1cn 11211  ax-addcl 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-nn 12265  df-slot 17216  df-ndx 17228
This theorem is referenced by:  strndxid  17232  setsidvaldOLD  17234  baseid  17248  2strop  17269  2strop1  17273  resslemOLD  17288  plusgid  17325  mulridx  17340  starvid  17349  scaid  17361  vscaid  17366  ipid  17377  tsetid  17399  pleid  17413  ocid  17428  dsid  17432  unifid  17442  homid  17458  ccoid  17460  oppglemOLD  19382  mgplemOLD  20157  opprlemOLD  20357  sralemOLD  21194  zlmlemOLD  21546  znbaslemOLD  21572  opsrbaslemOLD  22086  tnglemOLD  24670  itvid  28462  lngid  28463  ttglemOLD  28901  cchhllemOLD  28917  edgfid  29020  eufid  33275  resvlemOLD  33338  hlhilslemOLD  41922  mnringnmulrdOLD  44206
  Copyright terms: Public domain W3C validator