MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndxid Structured version   Visualization version   GIF version

Theorem ndxid 17244
Description: A structure component extractor is defined by its own index. This theorem, together with strfv 17251 below, is useful for avoiding direct reference to the hard-coded numeric index in component extractor definitions, such as the 1 in df-base 17259 and the 10 in df-ple 17331, making it easier to change should the need arise.

For example, we can refer to a specific poset with base set 𝐵 and order relation 𝐿 using {⟨(Base‘ndx), 𝐵⟩, ⟨(le‘ndx), 𝐿⟩} rather than {⟨1, 𝐵⟩, 10, 𝐿⟩}. The latter, while shorter to state, requires revision if we later change 10 to some other number, and it may also be harder to remember. (Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.)

Hypotheses
Ref Expression
ndxarg.e 𝐸 = Slot 𝑁
ndxarg.n 𝑁 ∈ ℕ
Assertion
Ref Expression
ndxid 𝐸 = Slot (𝐸‘ndx)

Proof of Theorem ndxid
StepHypRef Expression
1 ndxarg.e . . . 4 𝐸 = Slot 𝑁
2 ndxarg.n . . . 4 𝑁 ∈ ℕ
31, 2ndxarg 17243 . . 3 (𝐸‘ndx) = 𝑁
43eqcomi 2749 . 2 𝑁 = (𝐸‘ndx)
5 sloteq 17230 . . 3 (𝑁 = (𝐸‘ndx) → Slot 𝑁 = Slot (𝐸‘ndx))
61, 5eqtrid 2792 . 2 (𝑁 = (𝐸‘ndx) → 𝐸 = Slot (𝐸‘ndx))
74, 6ax-mp 5 1 𝐸 = Slot (𝐸‘ndx)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  cfv 6573  cn 12293  Slot cslot 17228  ndxcnx 17240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-1cn 11242  ax-addcl 11244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-nn 12294  df-slot 17229  df-ndx 17241
This theorem is referenced by:  strndxid  17245  setsidvaldOLD  17247  baseid  17261  2strop  17282  2strop1  17286  resslemOLD  17301  plusgid  17338  mulridx  17353  starvid  17362  scaid  17374  vscaid  17379  ipid  17390  tsetid  17412  pleid  17426  ocid  17441  dsid  17445  unifid  17455  homid  17471  ccoid  17473  oppglemOLD  19391  mgplemOLD  20166  opprlemOLD  20366  sralemOLD  21199  zlmlemOLD  21551  znbaslemOLD  21577  opsrbaslemOLD  22091  tnglemOLD  24675  itvid  28465  lngid  28466  ttglemOLD  28904  cchhllemOLD  28920  edgfid  29023  eufid  33260  resvlemOLD  33323  hlhilslemOLD  41896  mnringnmulrdOLD  44179
  Copyright terms: Public domain W3C validator