| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ndxid | Structured version Visualization version GIF version | ||
| Description: A structure component
extractor is defined by its own index. This
theorem, together with strfv 17121 below, is useful for avoiding direct
reference to the hard-coded numeric index in component extractor
definitions, such as the 1 in df-base 17128 and the ;10 in
df-ple 17188, making it easier to change should the need
arise.
For example, we can refer to a specific poset with base set 𝐵 and order relation 𝐿 using {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), 𝐿〉} rather than {〈1, 𝐵〉, 〈;10, 𝐿〉}. The latter, while shorter to state, requires revision if we later change ;10 to some other number, and it may also be harder to remember. (Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.) |
| Ref | Expression |
|---|---|
| ndxarg.e | ⊢ 𝐸 = Slot 𝑁 |
| ndxarg.n | ⊢ 𝑁 ∈ ℕ |
| Ref | Expression |
|---|---|
| ndxid | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndxarg.e | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
| 2 | ndxarg.n | . . . 4 ⊢ 𝑁 ∈ ℕ | |
| 3 | 1, 2 | ndxarg 17114 | . . 3 ⊢ (𝐸‘ndx) = 𝑁 |
| 4 | 3 | eqcomi 2742 | . 2 ⊢ 𝑁 = (𝐸‘ndx) |
| 5 | sloteq 17101 | . . 3 ⊢ (𝑁 = (𝐸‘ndx) → Slot 𝑁 = Slot (𝐸‘ndx)) | |
| 6 | 1, 5 | eqtrid 2780 | . 2 ⊢ (𝑁 = (𝐸‘ndx) → 𝐸 = Slot (𝐸‘ndx)) |
| 7 | 4, 6 | ax-mp 5 | 1 ⊢ 𝐸 = Slot (𝐸‘ndx) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ‘cfv 6489 ℕcn 12136 Slot cslot 17099 ndxcnx 17111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-1cn 11075 ax-addcl 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-nn 12137 df-slot 17100 df-ndx 17112 |
| This theorem is referenced by: strndxid 17116 baseid 17130 2strop 17147 plusgid 17195 mulridx 17206 starvid 17214 scaid 17226 vscaid 17231 ipid 17242 tsetid 17264 pleid 17278 ocid 17293 dsid 17297 unifid 17307 homid 17323 ccoid 17325 itvid 28437 lngid 28438 edgfid 28989 eufid 33301 |
| Copyright terms: Public domain | W3C validator |