MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndxid Structured version   Visualization version   GIF version

Theorem ndxid 17134
Description: A structure component extractor is defined by its own index. This theorem, together with strfv 17141 below, is useful for avoiding direct reference to the hard-coded numeric index in component extractor definitions, such as the 1 in df-base 17149 and the 10 in df-ple 17221, making it easier to change should the need arise.

For example, we can refer to a specific poset with base set 𝐡 and order relation 𝐿 using {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(leβ€˜ndx), 𝐿⟩} rather than {⟨1, 𝐡⟩, ⟨10, 𝐿⟩}. The latter, while shorter to state, requires revision if we later change 10 to some other number, and it may also be harder to remember. (Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.)

Hypotheses
Ref Expression
ndxarg.e 𝐸 = Slot 𝑁
ndxarg.n 𝑁 ∈ β„•
Assertion
Ref Expression
ndxid 𝐸 = Slot (πΈβ€˜ndx)

Proof of Theorem ndxid
StepHypRef Expression
1 ndxarg.e . . . 4 𝐸 = Slot 𝑁
2 ndxarg.n . . . 4 𝑁 ∈ β„•
31, 2ndxarg 17133 . . 3 (πΈβ€˜ndx) = 𝑁
43eqcomi 2741 . 2 𝑁 = (πΈβ€˜ndx)
5 sloteq 17120 . . 3 (𝑁 = (πΈβ€˜ndx) β†’ Slot 𝑁 = Slot (πΈβ€˜ndx))
61, 5eqtrid 2784 . 2 (𝑁 = (πΈβ€˜ndx) β†’ 𝐸 = Slot (πΈβ€˜ndx))
74, 6ax-mp 5 1 𝐸 = Slot (πΈβ€˜ndx)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541   ∈ wcel 2106  β€˜cfv 6543  β„•cn 12216  Slot cslot 17118  ndxcnx 17130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-1cn 11170  ax-addcl 11172
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-nn 12217  df-slot 17119  df-ndx 17131
This theorem is referenced by:  strndxid  17135  setsidvaldOLD  17137  baseid  17151  2strop  17172  2strop1  17176  resslemOLD  17191  plusgid  17228  mulridx  17243  starvid  17252  scaid  17264  vscaid  17269  ipid  17280  tsetid  17302  pleid  17316  ocid  17331  dsid  17335  unifid  17345  homid  17361  ccoid  17363  oppglemOLD  19256  mgplemOLD  20033  opprlemOLD  20231  sralemOLD  20936  zlmlemOLD  21286  znbaslemOLD  21310  opsrbaslemOLD  21824  tnglemOLD  24370  itvid  27945  lngid  27946  ttglemOLD  28384  cchhllemOLD  28400  edgfid  28503  eufid  32649  resvlemOLD  32704  hlhilslemOLD  41113  mnringnmulrdOLD  43271
  Copyright terms: Public domain W3C validator