![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ndxid | Structured version Visualization version GIF version |
Description: A structure component
extractor is defined by its own index. This
theorem, together with strfv 17133 below, is useful for avoiding direct
reference to the hard-coded numeric index in component extractor
definitions, such as the 1 in df-base 17141 and the ;10 in
df-ple 17213, making it easier to change should the need
arise.
For example, we can refer to a specific poset with base set π΅ and order relation πΏ using {β¨(Baseβndx), π΅β©, β¨(leβndx), πΏβ©} rather than {β¨1, π΅β©, β¨;10, πΏβ©}. The latter, while shorter to state, requires revision if we later change ;10 to some other number, and it may also be harder to remember. (Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.) |
Ref | Expression |
---|---|
ndxarg.e | β’ πΈ = Slot π |
ndxarg.n | β’ π β β |
Ref | Expression |
---|---|
ndxid | β’ πΈ = Slot (πΈβndx) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndxarg.e | . . . 4 β’ πΈ = Slot π | |
2 | ndxarg.n | . . . 4 β’ π β β | |
3 | 1, 2 | ndxarg 17125 | . . 3 β’ (πΈβndx) = π |
4 | 3 | eqcomi 2741 | . 2 β’ π = (πΈβndx) |
5 | sloteq 17112 | . . 3 β’ (π = (πΈβndx) β Slot π = Slot (πΈβndx)) | |
6 | 1, 5 | eqtrid 2784 | . 2 β’ (π = (πΈβndx) β πΈ = Slot (πΈβndx)) |
7 | 4, 6 | ax-mp 5 | 1 β’ πΈ = Slot (πΈβndx) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 β wcel 2106 βcfv 6540 βcn 12208 Slot cslot 17110 ndxcnx 17122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-1cn 11164 ax-addcl 11166 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-nn 12209 df-slot 17111 df-ndx 17123 |
This theorem is referenced by: strndxid 17127 setsidvaldOLD 17129 baseid 17143 2strop 17164 2strop1 17168 resslemOLD 17183 plusgid 17220 mulridx 17235 starvid 17244 scaid 17256 vscaid 17261 ipid 17272 tsetid 17294 pleid 17308 ocid 17323 dsid 17327 unifid 17337 homid 17353 ccoid 17355 oppglemOLD 19209 mgplemOLD 19986 opprlemOLD 20148 sralemOLD 20783 zlmlemOLD 21058 znbaslemOLD 21082 opsrbaslemOLD 21596 tnglemOLD 24141 itvid 27679 lngid 27680 ttglemOLD 28118 cchhllemOLD 28134 edgfid 28237 eufid 32379 resvlemOLD 32434 hlhilslemOLD 40798 mnringnmulrdOLD 42954 |
Copyright terms: Public domain | W3C validator |