![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ndxid | Structured version Visualization version GIF version |
Description: A structure component
extractor is defined by its own index. This
theorem, together with strfv 17141 below, is useful for avoiding direct
reference to the hard-coded numeric index in component extractor
definitions, such as the 1 in df-base 17149 and the ;10 in
df-ple 17221, making it easier to change should the need
arise.
For example, we can refer to a specific poset with base set π΅ and order relation πΏ using {β¨(Baseβndx), π΅β©, β¨(leβndx), πΏβ©} rather than {β¨1, π΅β©, β¨;10, πΏβ©}. The latter, while shorter to state, requires revision if we later change ;10 to some other number, and it may also be harder to remember. (Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.) |
Ref | Expression |
---|---|
ndxarg.e | β’ πΈ = Slot π |
ndxarg.n | β’ π β β |
Ref | Expression |
---|---|
ndxid | β’ πΈ = Slot (πΈβndx) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndxarg.e | . . . 4 β’ πΈ = Slot π | |
2 | ndxarg.n | . . . 4 β’ π β β | |
3 | 1, 2 | ndxarg 17133 | . . 3 β’ (πΈβndx) = π |
4 | 3 | eqcomi 2741 | . 2 β’ π = (πΈβndx) |
5 | sloteq 17120 | . . 3 β’ (π = (πΈβndx) β Slot π = Slot (πΈβndx)) | |
6 | 1, 5 | eqtrid 2784 | . 2 β’ (π = (πΈβndx) β πΈ = Slot (πΈβndx)) |
7 | 4, 6 | ax-mp 5 | 1 β’ πΈ = Slot (πΈβndx) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 β wcel 2106 βcfv 6543 βcn 12216 Slot cslot 17118 ndxcnx 17130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-1cn 11170 ax-addcl 11172 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-nn 12217 df-slot 17119 df-ndx 17131 |
This theorem is referenced by: strndxid 17135 setsidvaldOLD 17137 baseid 17151 2strop 17172 2strop1 17176 resslemOLD 17191 plusgid 17228 mulridx 17243 starvid 17252 scaid 17264 vscaid 17269 ipid 17280 tsetid 17302 pleid 17316 ocid 17331 dsid 17335 unifid 17345 homid 17361 ccoid 17363 oppglemOLD 19256 mgplemOLD 20033 opprlemOLD 20231 sralemOLD 20936 zlmlemOLD 21286 znbaslemOLD 21310 opsrbaslemOLD 21824 tnglemOLD 24370 itvid 27945 lngid 27946 ttglemOLD 28384 cchhllemOLD 28400 edgfid 28503 eufid 32649 resvlemOLD 32704 hlhilslemOLD 41113 mnringnmulrdOLD 43271 |
Copyright terms: Public domain | W3C validator |