| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ndxid | Structured version Visualization version GIF version | ||
| Description: A structure component
extractor is defined by its own index. This
theorem, together with strfv 17149 below, is useful for avoiding direct
reference to the hard-coded numeric index in component extractor
definitions, such as the 1 in df-base 17156 and the ;10 in
df-ple 17216, making it easier to change should the need
arise.
For example, we can refer to a specific poset with base set 𝐵 and order relation 𝐿 using {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), 𝐿〉} rather than {〈1, 𝐵〉, 〈;10, 𝐿〉}. The latter, while shorter to state, requires revision if we later change ;10 to some other number, and it may also be harder to remember. (Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.) |
| Ref | Expression |
|---|---|
| ndxarg.e | ⊢ 𝐸 = Slot 𝑁 |
| ndxarg.n | ⊢ 𝑁 ∈ ℕ |
| Ref | Expression |
|---|---|
| ndxid | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndxarg.e | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
| 2 | ndxarg.n | . . . 4 ⊢ 𝑁 ∈ ℕ | |
| 3 | 1, 2 | ndxarg 17142 | . . 3 ⊢ (𝐸‘ndx) = 𝑁 |
| 4 | 3 | eqcomi 2738 | . 2 ⊢ 𝑁 = (𝐸‘ndx) |
| 5 | sloteq 17129 | . . 3 ⊢ (𝑁 = (𝐸‘ndx) → Slot 𝑁 = Slot (𝐸‘ndx)) | |
| 6 | 1, 5 | eqtrid 2776 | . 2 ⊢ (𝑁 = (𝐸‘ndx) → 𝐸 = Slot (𝐸‘ndx)) |
| 7 | 4, 6 | ax-mp 5 | 1 ⊢ 𝐸 = Slot (𝐸‘ndx) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ‘cfv 6499 ℕcn 12162 Slot cslot 17127 ndxcnx 17139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-1cn 11102 ax-addcl 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-nn 12163 df-slot 17128 df-ndx 17140 |
| This theorem is referenced by: strndxid 17144 baseid 17158 2strop 17175 plusgid 17223 mulridx 17234 starvid 17242 scaid 17254 vscaid 17259 ipid 17270 tsetid 17292 pleid 17306 ocid 17321 dsid 17325 unifid 17335 homid 17351 ccoid 17353 itvid 28342 lngid 28343 edgfid 28893 eufid 33214 |
| Copyright terms: Public domain | W3C validator |