Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ndxid | Structured version Visualization version GIF version |
Description: A structure component
extractor is defined by its own index. This
theorem, together with strfv 16905 below, is useful for avoiding direct
reference to the hard-coded numeric index in component extractor
definitions, such as the 1 in df-base 16913 and the ;10 in
df-ple 16982, making it easier to change should the need
arise.
For example, we can refer to a specific poset with base set 𝐵 and order relation 𝐿 using {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), 𝐿〉} rather than {〈1, 𝐵〉, 〈;10, 𝐿〉}. The latter, while shorter to state, requires revision if we later change ;10 to some other number, and it may also be harder to remember. (Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.) |
Ref | Expression |
---|---|
ndxarg.e | ⊢ 𝐸 = Slot 𝑁 |
ndxarg.n | ⊢ 𝑁 ∈ ℕ |
Ref | Expression |
---|---|
ndxid | ⊢ 𝐸 = Slot (𝐸‘ndx) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndxarg.e | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
2 | ndxarg.n | . . . 4 ⊢ 𝑁 ∈ ℕ | |
3 | 1, 2 | ndxarg 16897 | . . 3 ⊢ (𝐸‘ndx) = 𝑁 |
4 | 3 | eqcomi 2747 | . 2 ⊢ 𝑁 = (𝐸‘ndx) |
5 | sloteq 16884 | . . 3 ⊢ (𝑁 = (𝐸‘ndx) → Slot 𝑁 = Slot (𝐸‘ndx)) | |
6 | 1, 5 | eqtrid 2790 | . 2 ⊢ (𝑁 = (𝐸‘ndx) → 𝐸 = Slot (𝐸‘ndx)) |
7 | 4, 6 | ax-mp 5 | 1 ⊢ 𝐸 = Slot (𝐸‘ndx) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ‘cfv 6433 ℕcn 11973 Slot cslot 16882 ndxcnx 16894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-1cn 10929 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-slot 16883 df-ndx 16895 |
This theorem is referenced by: strndxid 16899 setsidvaldOLD 16901 baseid 16915 2strop 16936 2strop1 16940 resslemOLD 16952 plusgid 16989 mulrid 17004 starvid 17013 scaid 17025 vscaid 17030 ipid 17041 tsetid 17063 pleid 17077 ocid 17092 dsid 17096 unifid 17106 homid 17122 ccoid 17124 oppglemOLD 18955 mgplemOLD 19725 opprlemOLD 19868 sralemOLD 20440 zlmlemOLD 20719 znbaslemOLD 20743 opsrbaslemOLD 21251 tnglemOLD 23797 itvid 26800 lngid 26801 ttglemOLD 27239 cchhllemOLD 27255 edgfid 27358 resvlemOLD 31531 hlhilslemOLD 39953 mnringnmulrdOLD 41828 |
Copyright terms: Public domain | W3C validator |